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Abstract. In this paper we study the total numbers of lattice trees wirh specified topologies. 
For strongly embeddable (or site) clusters with n, branching points of degree i ,  we show 
how to prove rigorously that the growth constants exist and are all equal to the neighbour- 
avoiding walk limit U. (This extends earlier work by Lipson and Whittington who proved 
an analogous result for weakly embeddable (or bond) clusters, for which the corresponding 
growth constant is the self-avoiding walk limit p.) We derive some exact upper bounds 
for the critical exponents associated with the ‘star’, ‘comb’ and ‘brush’ topologies. 

Exact enumeration data are derived and analysed for both weak and strong embeddings 
of some stars, combs and brushes on the square, triangular, simple cubic and d = 4 simple 
hypercubic lattices. We argue that the universality class for lattice trees with specified 
topology depends on the number, b, of branches, possibly through the conjectured critical 
exponent ( y f  b -  l ) ,  but not on any other details of the topology. Here y is the critical 
exponent associated with self-avoiding walks. 

We have also derived some exact enumeration data for the general d-dimensional 
simple hypercubic lattice. Using these data and the exact results for the interior of a Bethe 
lattice, we derive expansions for the growth constants in inverse powers of the dimensional- 
ity. These results are consistent with the growth constants being equal to the appropriate 
walk limits ( p  or U ) .  

We discuss the relationship of our work to renormalisation group results which suggest 
that the universality class of branched polymers is independent of the branching fugacity. 

1. Introduction 

Branched polymer molecules with excluded volume have been modelled as lattice 
animals, i.e. as connected clusters embeddable in a regular lattice (Lubensky and 
Isaacson 1979). A number of workers (Lubensky and Isaacson 1979, Family 1980, 
Daoud and Joanny 1981) have used renormalisation group ideas to  discuss the import- 
ance of cycles on their properties, arguing that the universality class is independent of 
the cycle fugacity. To investigate this point further, lattice trees (i.e. connected clusters 
having no cycles) have been studied using series expansion methods (Duarte and 
Ruskin 1981, Gaunt er al 1982) and Monte Carlo techniques (Seitz and Klein 1981). 
This evidence suggests that lattice trees and lattice animals are in the same universality 
class. So, for example, suppose that the number, a,, per lattice site of weakly embed- 
dable lattice animals with n vertices has the usual asymptotic form 

a, - n-’A ’’ ( n - + a )  (1.1) 
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where A is the growth constant for animals and @ is the associated critical exponent, 
and let the analogous form for the number, uno, per lattice site of weakly embeddable 
lattice trees with n vertices be 

( n + m ) .  

Then one finds (Gaunt et a1 1982), for simple hypercubical lattices of coordination 
number 4 = 2d and dimensionality d = 2 , 3 , .  . . , d, where d, (= 8) is the upper critical 
dimension, that 

eo=  e 
and, incidentally, that 

A 0  < A. (1.4) 

The result (1.3) appears to support the renormalisation group contention that the 
universality class is independent of the cycle fugacity. 

In order to investigate the crossover from trees to animals, Whittington et a1 (1983) 
considered the numbers, ant, per lattice site of weakly embeddable clusters with n 
vertices and cyclomatic index c. Assume that asymptotically the number of such 
c-animals goes like 

a,, - n?CA 

for all c. Whittington et a1 (1983) have shown rigorously that the growth constant A, 
is independent of c, i.e. 

(1.6) 

and have presented convincing evidence that the associated critical exponent 0, varies 
as c varies. More precisely, the observed c-dependence of @, supports the conjecture 
that 

A, = A 0  ( c  = 0,1 ,2 ,  . . . ) 

ec = eo - c (c=O, 1 ,2 , .  . . ) .  (1.7) 

The implication of (1.3) and (1.7) is that although trees and (unrestricted) animals 
are in the same universality class, c-animals ( c =  1 ,2 ,3 , .  . . )  are all in different 
universality classes. At first sight, this conclusion does not seem to support the field 
theory arguments which suggest that the exponent is independent of cycle fugacity. 
However, Whittington et a1 (1983) have presented an heuristic argument-a crucial 
element of which is the conjectured c-dependence of @,-which shows how their results 
may be reconciled with the field theory prediction. 

We have presented the above introduction to existing results in terms of weakly 
embeddable (or bond) clusters since, in this case, some of the steps can be proven 
rigorously. However, numerical evidence and general universality considerations indi- 
cate that precisely analogous results hold in the case of strongly embeddable (or site) 
clusters (Gaunt et ul 1982, Whittington et ul 1983). 

This paper is concerned with the growth constants and the critical exponents 
associated with the total numbers of lattice trees with n sites and specified topologies. 
Of particular interest will be the way in which the critical exponent depends-if at 
all-on parameters associated with the specific topology, e.g. the number ( b )  of 
branches, the number ( n , )  of branching points of degree i ( i  = 3,4 , .  . . , q ) ,  the number 
( n l )  of 'dangling ends' (i.e. vertices of degree 11, etc. The simplest type of tree is the 
chain with the topology shown in figure l ( a ) ;  more complicated topologies are shown 
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Figure 1. Examples of simple topologies: ( a )  simple chain, ( b )  star, ( c )  comb, ( d )  brush. 

in figures l (b ) ,  (c)  and (d) .  (Throughout figure 1, all vertices of degree 2 have been 
suppressed since they do not affect the topology or consequently the structure of the 
branched polymer.) 

The topology of the simple chain (see figure l ( a ) )  clearly has a single branch ( b  = 1) 
and two dangling ends ( n ,  = 2). To deal with the more complicated topologies in figure 
1, we define-quite generally-a brunch of the topology as a segment of simple chain 
terminated at each end by either a dangling end or a branching point. For the topologies 
shown in figure 1, 6 = 1 ,  5, 7 and 8, respectively. Using Euler's law of the edges it 
follows that 

(1.8) 

where n+ = n, is the total number of vertices with degree greater than two, i.e. 
the total number of branching points. Alternatively, we may use Euler's law to show 
that 

b= n + -  1 + n,, 

4 

n,  = 2 +  1 ( i -2)n,  (1.9) 
1=3 

and, hence, that both n ,  and 
9 

b = l +  1 ( i - - l )n1  
1 = 3  

(1.10) 

are determined by the integer set ( n 3 ,  n4,. . . , n4). 
The statistics of simple chains (see figure l ( a ) )  are already well known, see for 

example the reviews by McKenzie (1976) and Whittington (1982). If c, is the number 
of weakly embeddable chains with n sites, then asymptotically one writes 

c, - n'-'p" ( n - , * )  (1.11) 

where p is the self-avoiding walk (SAW) limit and y is the associated critical exponent. 
For two-dimensional lattices, we have the presumably exact value (Nienhuis 1982) of 

y = 1% = 1.34375 ( d = 2 )  (1.12) 

while in three dimensions the most precise estimate of y, namely 

y =  1.1615*0.0020 ( d  = 3), (1.13) 

has been obtained from renormalisation group field-theoretic calculations (Baker et 
a1 1978, Le Guillou and Zinn-Justin 1980). Estimates of y from exact enumeration 
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techniques (Watts 1975, and references therein) are very close to the values given in 
(1.12) and (1.13). For the SAW problem, the classical value of y is y = 1 and the upper 
critical dimension is d,  = 4, which implies that 

y = l  ( d 3 4 ) .  (1.14) 

The topologies in figures 1(  b )  and (c) are examples of ‘stars’ and ‘combs’, respec- 
tively (de Gennes 1979). More generally, let us define s (n ;  b )  to be the number of 
weakly embeddable stars with a total of n sites and b branches, and denote by c( n ;  t )  
the number of weakly embeddable combs with n sites and t ‘teeth’. We have called 
the topology in figure l ( d )  a ‘brush’ and, more generally, will use b ( n ;  m,, . . . , m,) 
to denote the number of weak embeddings with n sites and t ‘bristles’ of multiplicities 
m, ,  m2, .  . . , m,, respectively. For combs and brushes, the number of branches is given 
by 

t 

b =  m , + t + l .  
I = ,  

(1.15) 

(Note that s ( n ;  3) = c ( n ;  1) and s ( n ;  b’) = b ( n ;  b’ -2)  for b ’ a  3.) The topology in 
figure l ( c )  may be regarded as either a comb with t = 3 teeth or as a brush with t = 3 
bristles with multiplicities m, = m2 = m3 = 1. The brush in figure l ( d )  has t = 2 bristles 
with m, = 2, m, = 3. 

For complicated topologies, the acquisition of exact enumeration data becomes 
rapidly more difficult. Consequently, all the topologies that we study in detail in 9 3 
are simple examples of either stars, combs or brushes. For all these topologies, it has 
been proved (Lipson and Whittington 1983) that the growth constants exist and are 
all equal to the SAW limit p. More precisely, Lipson and Whittington (1983) have 
proved that 

lim n-’ log t( n ;  n3,  n4, . . . , n4)  = log p, (1.16) 

where t ( n ;  n3,  n,, . . . , n4) is the number, per lattice site, of trees with n vertices and 
a specified number ni of vertices of degree i ( i  = 3 ,4 , .  . . , q ) ,  weakly embeddable in 
a d-dimensional hypercubic lattice. Note that knowledge of n, n3, n,, . . . is sufficient 
to determine not only n ,  from (1.9) but also n2 through 

,I-x 

n 2 = n - n , - n + = n - 2 -  ( i - l ln , .  
1=3 

(1.17) 

The rigorous result in (1.16) proves extremely useful for the series analysis which 
we perform in 0 3 ( d  = 2,3)  and 94 ( d  = 4) on the exact enumeration data and enables 
us to focus attention on the associated critical exponents. Assuming the expected 
asymptotic form 

t ( n ;  n3,  n 4 , .  . . , n q ) - - n Y ‘ - l p n  ( n + m )  (1.18) 
we estimate y, and find that the data are consistent with 

y, = y + b - 1 (1.19) 

in all the cases studied. 
It should be noted, however, that values of n3, n 4 , .  . . , n4 do not necessarily specify 

a unique topology. For example, both of the topologies in figure 2 have n 3 = 4 ,  
n4 = ns = .  . . = 0 and yet are distinct. It follows that although (1.16) is sufficient to 
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Figure 2. Distinct topologies both having four vertices of degree 3 and none of higher 
degree. 

prove that the growth constant is p for topologies as simple as the ones we study in 
4 3, it does not establish this result for an arbitrary topology. Nevertheless, we expect 
the growth constant to be p for all topologies. Some relevant rigorous results are 
presented in 8 2. In addition, we expect each of the distinct topologies associated with 
a given set of integers ( n 3 ,  n4,.  . . , n4) to have the same critical exponent, (1.19), as 
their union. (This is because all topologies associated with the set ( n 3 ,  n4,. . . , n,) 
must have, from ( l . lO),  the same number of branches.) 

The result (1.19) is a conjecture. Besides being consistent with the exact enumeration 
data (see $9 3 and 4 and table 2), it of course agrees with (1.1 1) in the case of simple 
chains ( b  = l ) ,  it satisfies the exact upper bounds derived in § 2 (see also table 2 )  and 
is the correct result for the Bethe approximation (see § 4). In addition, we give in its 
support two different arguments, both heuristic in nature. The first of these depends 
upon a result which we prove rigorously in § 2. Consider a 'realisation' of a specific 
topology and allow the length of one of its branches to increase indefinitely while the 
lengths of the other branches remain fixed. Then, according to a theorem proved in 
§ 2, the growth constant for this sequence of realisations of the given topology is p. 
Furthermore, we expect the critical exponent to be chain-like since the large n 
behaviour should be dominated by the branch whose length is allowed to grow 
indefinitely and be essentially unaffected by the branches of fixed lengths. This gives 
a factor of nY- 'p "  for this sequence of realisations. The number of realisations of any 
given topology increases like nb- l  as n +CO (Gupta et a1 1958, Domb and Heap 1967), 
and so overall we might reasonably expect asymptotic behaviour of the form 

p". Not only does this simple argument give a growth factor of p, in agreement n b - l n y - l  

with the rigorous result (1.16), but comparison with (1.18) yields the conjectured 
form. (1.19), for yr. A hidden assumption in the above argument is that equal 
amplitudes are associated with each of the sequences of realisations. In fact, numerical 
analysis (unpublished work) of several sequences suggests more complicated behaviour 
and the above treatment, therefore, implicitly assumes a constant 'effective amplitude'. 

The second of the heuristic arguments to support (1.19) is presented in § 5 and is 
analogous to the one given by Whittington et al (1983) in support of their conjecture 
(1.7). The idea is to show how the conjecture (1.19) and the rigorous result (1.16) 
are crucial ingredients in an heuristic theory designed to demonstrate that the univer- 
sality class for branched polymers without cycles is independent of the branching 
fugacity z > O .  The introduction of branching fugacities is a natural device in the 
field-theoretic treatment of branched polymers (Lubensky and Isaacson 1979) and 
our conclusion that the universality class is independent of branching fugacity was 
anticipated in the position space renormalisation group calculations of Family (1980). 

In 8 3 the problem of strongly embeddable (or site) lattice trees with a specified 
topology is also studied. (We use the upper case letters S ( n ;  b ) ,  C ( n ;  t )  and 
B ( n ;  m,, m 2 , .  . . , m,) to denote the numbers of strongly embeddable stars, combs and 
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brushes, respectively.) We assume, in analogy with ( 1.18), an asymptotic form 

~ ( n ;  n3,  n4,. . . , n,) - n 7 T - ' U f l  ( n  +a) (1.20) 

since it follows rigorously from 8 2 that the dominant behaviour is determined by the 
growth constant U for neighbour-avoiding walks (Whittington 1982), i.e. strongly 
embeddable SAWS. From an analysis of the exact enumeration data, we estimate yT 
and find evidence supporting the universality conjecture 

Y T  = Yr. (1.21) 

In 0 4 we give the numbers of undirected neighbour-avoiding walks on a d- 
dimensional simple hypercubic lattice, for arbitrary integral d and up to n = 9 sites. 
We use these expressions to derive an expansion for U in inverse powers of U (= 2d - 1) 
correct through order f 3 .  We follow a similar procedure for strongly embeddable 
stars with three branches and up to n = 9 sites. In this case, the l /a expansion for 
the growth constant is derived through order f2 and agrees term by term with the 
corresponding expansion for U. This finding is consistent with the rigorous results of 
§ 2. Similar results have been obtained for weakly embeddable trees with a given 
topology. 

Finally, in § 6, our results are summarised and discussed. 

2. Invariance of growth constants and bounds on exponents for simple branched 
trees 

In this section we consider the set of trees with n vertices, n3 of degree 3, n4 of degree 
4, etc, strongly embeddable in the d-dimensional hypercubic lattice. We show that, 
for a certain subset of these trees, allowing the number of edges in one of the simple 
chains to go to infinity yields a growth constant which is the same as the corresponding 
growth constant for neighbour-avoiding walks. Similar arguments can be constructed 
relating the growth constants of weakly embeddable trees and self-avoiding walks. 
We then proceed to derive bounds on the corresponding critical exponents for some 
simple topologies. 

We first need some results on neighbour-avoiding walks. Let C, be the number 
of undirected neighbour-avoiding walks with n vertices. By arguments exactly 
analogous to those of Hammersley and Morton (1954) for SAWS, it is easy to  show 
that there exists a finite positive constant U such that 

Consider the subset ( U,( k)) of undirected neighbour-avoiding walks with n vertices 
whose two vertices of unit degree are the sole members of vertex subsets having largest 
and smallest values respectively of some specified coordinate, k. Using an unfolding 
transformation analogous to that used by Hammersley and Welsh (1962) it is easy to 
show that the number, B,, of such walks satisfies 

lim n-l log B, = sup n-l log B, =log U, 
f l>O n-cO 

i.e., the two sets of walks have the same growth constant. 
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We represent a particular topological class oE trees (e.g. one of the classes shown 
in figure 1) by a homeomorphically irreducible graph G. Choose a pair of vertices U, 
and 216 which are adjacent in G. In other words U, and are joined by a simple chain 
in a realisation of the tree. Removing the edge joining U, and 216 in G decomposes 
the graph into two connected components G, and Gb which contain U, and ub 

respectively. Suppose that it is possible to find two integers n, and n b  such that one 
can construct strongly embeddable realisations of G, and Gb, containing n, and nb 
vertices respectively. Suppose in addition that for some k, U, belongs to the vertex 
subset with largest k-coordinate in the embedding of G, and ub  belongs to the vertex 
subset with smallest k-coordinate in the embedding of Gb. For an example relevant 
to the following argument see figure 3. Translate the embedding of G, so that U, is 
at the origin. For each U E U,(k)  translate U so that the unit degree vertex with 
smallest k-coordinate is at x k  = 1, x, = 0, V] # k. Suppose that the other unit degree 
vertex of U has coordinates ( x y ,  x: ,  . . . , x : ,  . . . ). Translate the embedding of Gb such 
that the coordinates of are ( x y ,  x ! ,  . . . , x:+ 1 , .  . . ). By adding the two appropriate 
edges to join the unit degree vertices of U to U, and ub  we have constructed a realisation 
of G with (n ,  + nb + m )  vertices which is strongly embeddable in the lattice. Since 
there are B, such simple chains and, by hypothesis, at least one strong embedding of 
the realisations of G, and Gbr the number of strong embeddings with n vertices, TG(n) ,  
of the topological class represented by the graph G is bounded below as 

Figure 3. Example of a construction of G from G,, Gb and a neighbour-avoiding walk. 

Taking logarithms, fixing n, and nb and letting n tend to infinity, (2.2) and (2.3) imply 
that 

n-rm lim inf n-' log TG(  n )  3 log U.  (2.4) 

To construct an upper bound we note that the arguments given by Lipson and 
Whittington (1983) for an upper bound on weak embeddings with specified n3, n4,.  . . 
can be taken over mutatis mutandis to this problem, with SAWS replaced by neighbour- 
avoiding walks. This argument shows that 

n-m lim sup n-l log TG( n )  log U. (2.5) 

Then (2.4) and (2.5) imply 

n-m lim n-' log T G  ( n )  = log U. (2.6) 

To apply this general result to some of the topologies with which we are especially 
concerned in this paper, we note that choosing G, to be a single vertex and Gb to be 
a star with s vertices, s - 1  of degree 1 and one of degree s-  1 (the degree ( s -1 )  
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vertex being labelled u b ) ,  it follows that stars with s branches have growth constant 
U. Similarly if we choose G, to be a star with s' vertices, s'- 1 of degree 1 and one  
of degree s ' -  1 (with the vertex of degree s'- 1 labelled U , ) ,  then concatenating this 
G, with the above Gh through each member of a set of appropriate simple chains 
shows that this kind of brush with two vertices of degree s and s' has growth constant 
U .  Similar arguments can be constructed for other topologies. 

We  have focused on the specific case in which one simple chain in the graph becomes 
infinite; these arguments also establish the invariance of the growth constant when 
any number of simple chains in the graph grow to infinity. 

W e  now consider bounds on the associated critical exponents (defined for instance 
through ( 1 . 1 8 ) ) .  The arguments given will be for strong embeddings but analogous 
reasoning can be applied to the case of weak embeddings. 

The general approach for deriving upper bounds will be to construct the graph 
from a set of neighbour-avoiding walks; since these walks are not necessarily mutually 
avoiding this will yield an upper bound on the appropriate number of embeddings. 

Consider a star with b branches. If b is even this star can be constructed from b/2 
neighbour-avoiding walks, which intersect at a common vertex (which is not of unit 
degree for any walk). The number of embeddings of the b-star with n vertices is then 
bounded above by 

S ( n ;  b ) s 2  2 . .  . C Cn, ,C , , , 2 . . .  c, , , , ,z(m,-2)(m2-2) . .  . ( m b , r - 2 )  (2.7) 
'"I "2: ' "h  2 

where 

m, 2 3 V I  (2 .8 )  

m , + m z +  . . . +  mb, ,=n+ib- l .  ( 2 . 9 )  
The factors ( m ,  - 2 )  etc arise f rom the number of ways of choosing the common 

and 

vertex in each walk. Assuming the usual asymptotic form 

Cn - n Y - ' u "  (2.10) 

where y is thought to be the same for self-avoiding and neighbour-avoiding walks 
(Watson 1970), 

2 C Cm,Cm2... cm,,(m,-2)(m,-2) . . . (mb,2-2) 
nil  m 2  mb 

- 1.. . C ( m l m 2 . .  . mb,Z)'un 
m i  m Z  n 7 h / 2  

~ ~ ( b / z ) - I  n ( b / 2 ) y U n  

Hence, if 
S ( n ;  6)-  nYs.b- 'ufl ,  

( 2 .8 )  and ( 2 . 1 1 )  give 

Y S , ~  $ b ( ~  + b even. 

A similar argument for b odd yields 

YS.6 $b( Y + 1 +& Y - 1 ), b odd. 

(2.1 1) 

(2 .12 )  

(2 .13 )  



Lattice trees with specified topologies 219 

For other cases, such as a brush having t bristles with multiplicities ml, m 2 , .  . . , 
we proceed in an analogous manner. The number of branches, b, will be given by 
(1.15) and there will be O(nh-’ )  ways of distributing the edges among the different 
branches. The brush can be constructed from 1 +Z, m, neighbour-avoiding walks (the 
‘backbone’ of the brush and the bristles). It is then easy to show that an upper bound 
on the exponent Y ~ . ~ ~ , ~ , ~ .  . is given by 

or 

YB.m ! .m>.. .  ~ ( b - t ) + t .  

y (  f + 1) + t. 
In the special case of a comb this becomes 

yc..r 

(2.14) 

(2.15) 

(2.16) 

For teeth with multiplicities greater than one the bound (2.15) can be improved by 
using one neighbour-avoiding walk to make up two bristles in a manner similar to that 
described above for stars. 

It is also easy to show that the exponent for each of these topologies is bounded 
below by the SAW exponent y.  

It is interesting to note that for dimensionality d 2 d,, when according to (1.14) 
we have y = l ,  the upper bounds (2.12), (2.13), (2.15) and (2.16) all coincide with 
our conjecture (1.19) which reduces to yr  = b. More generally, for arbitrary d,  these 
bounds imply that yr  = O ( b ) ,  which rules out the possibility of powers of b greater than 
the first. 

3. Series derivation and analysis: d = 2 and 3 

We have derived exact enumeration data for stars, combs and brushes, both weakly 
and strongly embeddable in the square, triangular and simple cubic lattices. The data 
for weak embeddings are presented in appendix 1 and those for strong embeddings 
in appendix 2. (Note that in the appendices and throughout this section we use n to 
denote the number of bonds (sites) for weak (strong) embeddings. Although we have 
found it more convenient to use different conventions in other sections, no confusion 
should arise in practice.) Data for the stars s( n ;  3 )  weakly embeddable in the triangular, 
diamond, simple cubic, body-centred cubic and face-centred cubic lattices have been 
given by McKenzie (1967) through orders n = 10,11,12,12 and 10 bonds, respectively. 
With this exception the data in appendices 1 and 2 appear to be new. We reproduce 
McKenzie’s data, which are somewhat inaccessible, for the diamond, body-centred 
cubic and face-centred cubic lattices in appendix 3. 

For both weak and strong embeddings, we have considered stars with b = 3, 4, 5 
and 6 branches, combs with t = 2  and 3 teeth, and brushes with t = 2  bristles either 
with multiplicities one and two or both of multiplicity two. For strong embeddings, the 
data extend through n = 16, 13 and 11 sites for the square, triangular and simple cubic 
lattices, respectively. (Note, however, that for the triangular lattice S (  n ;  b )  = 0 for all 
n for b = 4 , 5  and 6 and that there are no brushes, i.e. B ( n ;  m,, m2, . . . , m,) = 0 for all 
possible n and {ml}.)  For weak embeddings, the extent of our data depends not only 
on the lattice but also on the topology; in the most favourable cases the data are 
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through n = 16, 14 and 14 bonds for the square, triangular and simple cubic lattices, 
respectively. 

For the strong embeddings, the data were derived by first enumerating (by com- 
puter) all lattice trees with n sites ( n  = 1 , 2 , 3 , .  . . ) and then classifying them according 
to the integer set (n3, n4,. . . , nq) .  As we saw in P 1, simple topologies are specified 
uniquely by such a set. A similar procedure was used to derive the data for weak 
embeddings through n = 14, 10 and 10 bonds for the square, triangular and simple 
cubic lattices, respectively. Larger values of n are impracticable by this technique 
since they are too expensive in computer time. However, in the case of the weak 
embeddings, some additional data have been derived by computer enumeration of all 
possible realisations, for a given n, of a specified topology. The numbers of possible 
realisations for various topologies and values of n are given in table 1. (As mentioned 
in § 1, these numbers are known to increase asymptotically like nb-' for all topologies.) 
This technique too is soon limited by the available computing time. 

Table 1. Numbers of possible realisations for various topologies and n s 20 

n s ( n ;  3) s (n ;4 )  s ( n ;  5) s ( n ; 6 )  c ( n ;  2) c ( n ;  3) b ( n ;  1,2)  b ( n ;  2,2)  

3 1  
4 1  1 
5 2  1 1 1 
6 3  2 1 1 2 
7 4  3 2 1 5 
8 5  5 3 2 9 
9 7  6 5 3 17 

10 8 9 7 5 27 
11 10 11 10 7 43 
12 12 15 13 11 63 
13 14 18 18 14 92 
14 16 23 23 20 127 
15 19 27 30 26 174 
16 21 34 37 35 230 
17 24 39 47 44 302 
18 27 47 57 58 386 
19 30 54 70 71 490 
20 33 64 84 90 610 

1 
3 

10 
24 
55 

109 
206 
3 60 
606 
970 

1508 
2264 
3322 
4750 

1 
3 1 
8 2 

17 5 
33 10 
58 20 
97 35 

153 61 
233 98 
342 155 
489 234 
681 347 
930 498 

1245 705 
1641 973 

We have analysed all the data given in the appendices using standard series analysis 
methods (Gaunt and Guttmann 1974). For example, for the star s ( n ;  3) weakly 
embeddable in the square lattice we have plotted against l / n  in figure 4 the ratios 
r, = s ( n ;  3)/s(n-1;  31, the linear extrapolants r ;  = ~ n r , - ( n - 2 ) r n - , J  from alternate 
points and their averages r i  = t ( r , + r ; ) .  According to (1.16), all these plots should 
approach p as n + 00. The arrow in figure 4 indicates the unbiased estimate of p given 
by Watts (1975). The corresponding evidence for the triangular, diamond, simple 
cubic, body-centred cubic and face-centred cubic lattices is equally satisfactory. Note 
that for the close-packed lattices, the extrapolants r ;  have been calculated from 
adjacent points, i.e. r ;  = nr, - ( n  - 1)rn-', 

The exponent can be estimated from the sequence of biased estimates 
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Figure 4. Plots against l / n  of unbiased ratio esti- 
mates of the growth parameter for weak embeddings 
of the star s ( n ;  3) on the square lattice. The arrow 
indicates an unbiased estimate of p (Watts 1975). 

Figure 5. Plots against l / n  of biased ratio estimates 
of ys,3 for weak embeddings of the star s ( n ;  3) on 
the square (El) and triangular (A)  lattices. The con- 
jectured exponent ( y + 2 )  is indicated by an arrow. 

where 
(1975). We also form linear extrapolants 

is an estimate of p for which we have used the unbiased estimate of Watts 

Y : , 3 ( n )  =[nYs,3(n)-(n-m)Ys,3(n-m)l /m 

from alternate points ( m  = 2) for loose-packed lattices or adjacent points (m = 1) for 
close-packed lattices and the averages 

Y :3 ( n 1 = 3r 7 S . A  n )  + Y :,3 ( n )  I. 
Plots of ~ ~ , ~ ( n ) ,  ~ $ , ~ ( n )  and y & ( n )  against l / n  are given in figure 5 for the square 
and triangular lattices. Similar plots are obtained in three dimensions. Our best 
estimates of ys,3 are 

ys,3 = 3.2 * 0.25 ( d = 2 )  (3.1) 

=3.15*0.30 ( d = 3 ) .  (3.2) 

We have analysed, using numerical techniques identical to those outlined above, 
our data for combs, brushes and the remaining stars with b = 4, 5 and 6 branches. 
Some typical plots are shown in figures 6 and 7. In figure 6 we plot, against l / n ,  
estimates of yc,z for combs with t = 2 teeth on the square and triangular lattices. 
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I I 

-7 I I 

l l n  1 I n  

Figure 6. Plots against l / n  of biased ratio estimates Figure 7. Plots against l / n  of biased ratio estimates 
of ye,* for weak embeddings of the comb c ( n ;  2) on of Y ~ , , , ~  for weak embeddings of the brush b ( n ;  1 ,2 )  
the square (U) and triangular (A)  lattices. The con- on the simple cubic lattice. The conjectured 
jectured exponent ( y + 4 )  is indicated by an arrow. exponent ( y + 5 )  is indicated by an arrow. 

Estimates of yb,1,2 for brushes with t = 2 bristles of multiplicities ml  = 1 and m2 = 2 on 
the simple cubic lattice are plotted against l / n  in figure 7. In figures 5 ,  6 and 7, the 
exponent ( y + b - 1 ) ,  as conjectured in (1 .19 ) ,  is indicated by an arrow and the 
uncertainties induced by the uncertainties in p are less than the size of the symbols. 

Our best estimates of all the critical exponents studied are presented in table 2 
where they are compared with our conjectured exponent ( y  + b - 1 ) .  We also give in 
table 2 numerical values for the exact upper bounds derived in 9 2. From this table 
(see also figures 5 ,  6 and 7), we see that our results are not inconsistent with the 
conjecture, although other possibilities cannot be ruled out. However, it appears that 
the possibility of the exact inequalities (2 .12 )  and (2 .13)  for stars holding as strict 
equalities is probably excluded by our results for stars with b = 3 and b = 4 branches 
in two dimensions. 

It is not difficult to understand why the quality of our results is, in general, relatively 
poor. For a given topology, the most numerous realisations and those which will 
dominate the asymptotic behaviour are those in which all the branches are of different 
lengths. For a topology with b branches, one requires at least 4b( b + 1 )  bonds before 
such a realisation can occur. The only cases where our series are at least this extensive 
are stars with b = 3  and b = 4  branches. It is in just these cases that our exponent 
estimates are the most precise and hence provide the strongest support for our 
conjecture (1 .19 )  while apparently excluding, with some degree of confidence, our 
exact upper bounds for stars holding as strict equalities. 
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We have analysed the corresponding data for strong embeddings in exactly the 
same way. Provided that lim r, exists, it readily follows from the lemma proved in 0 2 
that the ratios r,, their extrapolants rk and the averages r: should all approach U as 
n + a 3  for all the topologies that we have studied. As an example, we have plotted 
these quantities against l / n  in figure 8 for the comb C ( n ;  2) on the triangular lattice. 
The arrow indicates the best available estimate of U (Whittington et a1 1979). (Esti- 
mates of U for the square and simple cubic lattices are given by Gaunt et a1 1979, 
1980).) The corresponding plots for other lattices and topologies are equally satisfac- 
tory in most cases. 

The ratio analysis plots for the critical exponents are numerous and rather similar 
to those obtained for the weak embeddings. They are therefore omitted and our best 
estimates of the critical exponents are given in table 2, where they may be compared 
with the corresponding estimates for weak embeddings and with the conjectured value 
( y  + b - 1). Clearly, our results are consistent with the conjecture and support the 
hypothesis, expressed more generally in (1.21), of universal critical exponents for both 
weak and strong embeddings. 

-5  L 0.15 

1 l n  

Figure 8. Plots against l / n  of unbiased ratio estimates of the growth parameter for strong 
embeddings of the comb C ( n ;  2) on the triangular lattice. The arrow indicates the best 
available estimate of U (Whittington e? a1 1979). 

4. Expansions for hypercubical lattices 

For the general d-dimensional simple hypercubic lattice, we have derived expressions 
for the numbers of strongly embeddable simple chains (or undirected neighbour- 
avoiding walks) with up to n = 8 bonds. They are 
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+ 322 560( 3 

+ 13 870 080( 7") +5160 960( f) (4.1) 

where (f) are binomial coefficients. To calculate the coefficients of the binomial 
coefficients, we first computed C, ( n  = 1,2 ,3 ,  . . .) for fixed d (= 4,5 ,  . . . ) by machine 
enumeration. Data for the cases d = 2 and 3 are already known through orders n = 24 
and 16, respectively (Whittington et a1 1979, Gaunt et a1 1980). 

We now use these results to derive an expression for U in inverse powers of 
a = 2 d - 1 .  The data in (4.1) may be written in the general form 

C n ( d ) = " i l  cb( ). 
g=o n-5 

For 5 = 0, 1, 2 and 3 we have been able to calculate Cb as functions of n, 

(3 C, ( d )  = 2"-' n ! ( t) + 2n-2( n - 1 ) ! ( n 2  - 3 n + 3) 

+2"-3(n -2)!&3n4- 26n3+ 87n2- 136n+96) 

+2"-,(. - 3)!i(n6- 1 7 d +  120n4-453n3+983n2 

-1228n+852)( n-3  )+...+(:) ( n 3 6 ) .  

(4.2) 

(4.3) 

Following the approach outlined by Gaunt et a1 (1976) we expand the binomial 
coefficients in (4.3) in inverse powers of U giving 

C, ( d )  = $an [ l  - ( n  - 3)a-I + $( n 2  - 7n + 1 4 ) f 2  -&( n3 - 1 2n2 + 71 n - 2 4 6 ) ~ - ~  + . . .]. 
(4.4) 

(4.5) 

Hence, 

In o ( d )  = lim n-' In Cn(d) =In -$a-'-3' 3u -3- . . .  
n-m 
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or, taking exponentials, 

u = ( T ( ~ - c ( + - ' - ~ ( T - ~ -  . . . ) .  (4.6) 

The prefactor term in (4.6) corresponds, as expected, to the Bethe approximation 
U = c and the leading correction term is of first order in l / c  

In a similar way, we have derived the following expressions for the numbers S(n; 3) 
of stars with three branches and up to n = 8  bonds strongly embeddable in a d- 
dimensional hypercubic lattice: 

S(4; 3) = 20( 3 + 144( 3 + 192( f) 
s ( 5 ; 3 ) = 8 4 ( ~ ) + 1 3 2 0 ( ~ ) + 4 4 1 6 ( ~ + 3 8 4 0 ( ~  

S(7; 3) = lO48( 3 +57  696( 3") +631 872( f) +2328 960( 3 
+ 3340 800( 6") + 1612 800( 7") 

S(8; 3) = 3312( 3 +329400( 3 + 5 8 2 1 8 2 4 ( 3  +34 379 5 4  3 
+ 8 5 1 7 8 8 8 0 ( ~ ) + 9 2 2 5 2 1 6 0 ( ~ ) + 3 6 1 2 6 7 ? , 0 ( ~ ) .  (4.7) 

It can be shown more generally that 

(4.8) 

1 
3!  

= - 2"-'n! ( n  - l ) ( n  -2) 2"-2(n - l)! ( n  -2) (n3-4n2+3n +6)  

( n  -2)!&3n6-35ns+ 153n"-269n3 

+700n-1020)( n -2  ) +. . . ( n 2 4 )  

and hence that 

lim n - ' l n S ( n ; 3 ) = 1 n a - ( ~ - ' - - t a - ' -  . . . ,  
n -0c 

(4.9) 

(4.10) 

which is term-by-term identical with the analogous expansion (4.5) for In U ,  at least 
to this order. This is consistent with the result 

lim n-l In S( n; 3) = lim n-' In Cn =In U, 
n - m  n-3 )  

which readily follows from the lemma proved in § 2. 

(4.11) 
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We have performed similar calculations for weak embeddings of stars with three 
branches. Expressions for s ( n ;  3) for n G 9 bonds are 

s(3; 3) = 4 ( 3  +8(  ;3 
s(4; 3) = 36( 3 + 192( 3") + 192( 3 
s(5; 3) = 192( 3 + 2280( 3")+ 5760( 3 + 3840( 3 
s(6; 3) = 872( 3 +20 176( 3 +96  640( 3 + 153 600( 3 +76 goo( 8 
s(7; 3) = 3508( 2") + 151 416( 3") + 1235 520( 3 +3509 760( 3 +4032 OOO( 3 

+ 1612 800( 3 
s(8; 3) = 13 252( 3 + 1035 696( 3 + 13 515 264( 3 +61063 680( fl 

+ 120 844 800( :) + 108 380 160( 3 +36  126 720( i) 
s ( 9 ; 3 ) = 4 7 3 2 0 ( 3 + 6 6 3 2  1 8 4 ( 3 + 1 3 3 7 9 1  104(3+903610240($  

+2739 394 560( 8 +4130 595 840( ;) + 3034 644 480( 8 
+ 867 041 280( 3. (4.12) 

More generally, we find 

(4.13) 

and the first few terms are 

1 
3! 

~ ( n ;  3) =-2"-ln! ( n  - l ) ( n  -2) 2"-'(n - l ) !  n ( n  - l ) ( n  - 2)' 

1 
3! 

+-2"-3(n-2)! ( T I  - 3)a(3n5-20n4+48n3- 53n2+ 12n + 100) 

1 
3! 

+- 2"-'( n - 3)! ;(TI'- 17n7+ 120n6-459n5 + 1029n4 - 1230n3 - 64n' 

L",>+* +3596n - 7152) ( n  L 5 ) .  (4.14) 

The coefficients of (,") in (4.14) and (4.9) are identical since, for clusters which stretch 
into the maximum possible number of dimensions, there is no difference between weak 
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and strong embeddings. From (4.14) we obtain 

lim n - ' 1 n s ( n ; 3 ) = 1 n a - a - ~ - 2 a - ~ - .  . . .  
n-m 

(4.15) 

For the problem of weakly embeddable chains (or undirected self-avoiding walks), 
Fisher and Gaunt (1964) give the analogue of (4.5) as 

In p (  d) = lim n-' In cn( d)  = In a - f2  - 2a?  - 1 l&-4 - - . . . .  (4.16) 
fl-m 

The expansions (4.15) and (4.16) are term-by-term identical at least through order 
This observation is consistent with the exact result in (1.16). 

On taking the exponential of (4.16) we get (Fisher and Gaunt 1964) 

p = ~ ( 1 -  2 ~ - ~ -  1 1 ~ ~ -  6 2 0 - ~  - . . . ). (4.17) 

Although l/a expansions are probably only asymptotic, comparison of (4.17) with 
(4.6) suggests that the rigorous result p ( d )  3 ~ ( d )  is in fact a strict inequality for all 
d. Numerical estimates of p and U support this conjecture for d = 2 and 3 (Watts 
1975, Gaunt et a1 1979, 1980). 

More generally, let us consider weakly embeddable stars with n bonds and b 
branches. The Bethe approximation for lattices of coordination number q may be 
obtained by first embedding the homeomorphically irreducible graph in (2) ways and 
then multiplying by a factor to account for the additional ( n  - b )  bonds, giving 

(4.18) 

A detailed study shows that for hypercubical lattices with q = 2d the leading correction 
to (4.18) is of O(d"-'). Hence, following some algebra, we find 

s ( n ;  b )  =-2fln! (: I :) ( f )  +i 2n-2( n - l)! ( 2 n 2  - 4n - b2 + 3 b )  
b! 

(;I :>( n !  l) +. . . ( n  3 6 ) .  (4.19) 

Note that on setting b = 3 we reproduce the first two terms in (4.14). Expanding the 
binomial coefficients in inverse powers of U gives 

~ ( n ;  b)=-  b! ( n - 1 ) a n [ 1 - ~ b ( b - 3 ) a - 1 + O ( o ' ) ]  b-1 

and hence 

lim n- '  In s(n ;  6) =In o+o(cT-~). 
n + m  

(4.20) 

(4.21) 

If the star is strongly embeddable in a hypercubic lattice the leading correction to 
(4.18) is then of O(d"-'). Consequently, the Bethe approximation gives only the 
leading contribution correctly, namely 

giving 
lim n-' In S (  n; b )  = In a + O( a-'). 
n-a, 

(4.23) 
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For all 6, there is term-by-term agreement between (4.21) and (4.16) and between 
(4.23) and (4.5). Such agreement is consistent with the exact result (1.16) for weak 
embeddings and that proved in P 2 for strong embeddings. Although these results are 
not particularly impressive, owing to the shortness of the series, the calculation of 
further terms in (4.19) and (4.22) is a highly non-trivial problem. 

More generally still, it seems that in the Bethe approximation the number of 
embeddings g, of a graph G with n bonds is 

(4.24) 

Here U = q - 1 where q is the coordination number of the lattice, R ( G )  is the reciprocal 
of the symmetry number of G and A 2 ,  Aj ,  . . . , A, are integers whose values depend 
on the topology under consideration. For example, setting l / R ( G )  = b ! ,  A i  = 1 for 
2 G i S b - 1 and A,  = 0 otherwise regains the result (4.18) for stars with b branches. 
The corresponding result for combs with n bonds and t teeth can be obtained by 
setting R (G)  = 4, A,  = t for i = 2 and zero otherwise. This gives 

(4.25) 

where we have used b = 2t + 1 which follows from (1.15) on setting mi = 1 for all i. 
Similarly for brushes with t bristles of multiplicities m,, m 2 , .  . . , m,, we set 

f 

1 /R(g )  = A(ml  + l ) (mf  + 1) n m,! , 
1 = 1  

where A is 1 or 2 depending on the symmetry, and hi = 2 ;  1 ( i  = 2 ,3 , .  . . , U ) ,  where 
the prime indicates that the summation over the bristles includes only those with 
multiplicity greater than or equal to ( i  - 1). The resulting expression may be rewritten 
more conveniently as 

(4.26) 

For the hypercubical lattices, it follows from the general Bethe result (4.24) that 
for sufficiently large n 

for weak embeddings and 

G, = n!2,( n -1  ) R ( G ) (  t) + 
b-1 

(4.27) 

(4.28) 

for strong embeddings. (Note that on making the substitutions appropriate for stars 
in (4.27) and (4.28) one regains the results (4.19) and (4.22), respectively.) As expected 
the results (4.27) and (4.28) give l / u  expansions for the appropriate growth factors 
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which agree with the l/a expansions for p and U through first and zeroth orders, 
respectively. 

To conclude this section we use the data given in (4.7) and (4.12) to study the 
asymptotic forms of S( n ;  3) and s ( n ;  3) in d = 4 dimensions. The aim here is to test 
the validity of our conjecture (1.19) at the critical dimension where, according to 
(1.14) and (1.21), we expect to find y s , 3 = y s . 3 = 3  (or b more generally). We have 
employed the same series analysis techniques as described in 0 3. Biased estimates of 
ys.3 and ys,3 have been calculated using p( d = 4) = 6.768 f 0.002 (Fisher and Gaunt 
1964) and u ( d  = 4) = 5.93 k0.03 and are plotted against l / n  in figure 9. (We obtained 
the estimate of U from a ratio analysis of the data given in (4.1).) Clearly these results 
are consistent with the conjectured values of ys.3 = ys,3 = 3. 

1 
0 3  0.2 0 1  0 

1 I n  

Figure 9. Plots against l / n  of biased ratio estimates of and ys.3 for weak (0) and 
strong (+) embeddings, respectively, of stars with b = 3 branches on the simple hypercubic 
lattice of d = 4 dimensions. The conjectured exponent b is indicated by an arrow. 

5. Connection with lattice trees 

In this section we focus on the relationship between lattice trees with specified topologies 
and the total number of unrestricted lattice trees. We work with weakly embeddable 
clusters, although analogous ideas hold for strong embeddings. 

It seems that trees with any specified topology all have the same growth constant 
p, namely, the SAW limit. For unrestricted trees, on the other hand, the growth constant 
is Ao,  where it is known rigorously that A,> p (Gaunt et a1 1982). In addition, and 
more importantly, the universality class of trees with a specified topology depends on 
the number ( b )  of branches, possibly through the critical exponent ( y + b - 2), while 
for unrestricted trees the analogous exponent is -8,. By contrast, position space 
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renormalisation group calculations (Family 1980) suggest that varying the branching 
fugacity should not change the universality class of branched polymers with no cycles. 

In order to reconcile these apparently contradictory results, we present the following 
heuristic argument. This parallels rather closely that used by Whittington et a1 (1983) 
to reconcile their exact enumeration results for animals with a prescribed number of 
cycles with the field-theoretic renormalisation group prediction that critical exponents 
are independent of cycle fugacity. 

Let us begin by defining an activity (or fugacity) x ,  associated with a vertex of 
degree i ( i  = 1,2 ,  . . . , q ) .  Clusters with n sites and vertex set (n3 ,  n4, . . . , n,) will then 
be associated with an embedding factor t ( n ;  n3,  n4,.  . . , n,) and an activity factor 
IIa=, x l i ,  where n ,  and n2 are given by (1.9) and (1.17), respectively. Summing over 
all possible vertex sets { n , }  and substituting for n ,  and n2 gives the generating function 

If we define the reduced activities 

2, = X I / X 2  ( i  = 1 , 3 , 4 , .  . . , q ) ,  (5 .3 )  

Letting 

21 = 23 = zq = . . . = 2, = z 

now gives 
b G ( n ;  2, x 2 )  = zx; t ( n ;  n3,  n4,. . . , n,)z 

in,) 

( 5 . 5 )  

( 5 . 6 )  

where we have used the relation (1.10). The variable z ,  which keeps track of the 
number of branches in the cluster, will be referred to as the branching fugacity. 

If we use (1.18) and (1.19) to replace t ( n ;  n3, a,, . . . , n,) in (5.6) by its dominant 
asymptotic form, we obtain 

bmax 
G ( n ;  2, x2) = z x i n Y - ' p "  Abnbzb  

b = l  

- ZX; n y-2p "A( nz ) ,  n + w ,  

where 
P 

A ( W ) =  A b W b  
b = l  

(5.7) 

is the generating function of the amplitudes Ab (Note that the amplitude Ab is the 
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sum of the amplitudes associated with the cluster numbers for all the vertex sets 
(n3 ,  n4,. . . , n,) consistent with a given number, b, of branches.) 

We see from (5.1) that G ( n ;  1 , l )  = anO, the number of weakly embeddable lattice 
trees with n sites. If we assume (Gaunt er al 1982) that 

ana- tOn-eOAI;, n + a ,  (5.10) 

then it follows that 

A( w )  - t o ~ 2 - y - e o  eaw, W - t c o ,  (5.11) 

a = ln(ho/p).  (5.12) 

where 

On substituting this form for A( w )  into (5.8) we obtain, for z arbitrary but close to 
the lattice tree limit ( z  = l) ,  

G ( n ;  z, x 2 )  - ( t O z 3 - Y - e ~ ) n - e ~ ( ~ 2 p  (5.13) 

As expected, the growth constant and the critical amplitude are both functions of z. 
However, the critical exponent is independent of z and equal to the tree exponent 00. 
Thus, the universality class for branched polymers without cycles is independent of 
the branching fugacity (at least in the vicinity of the tree limit). 

Within the context of this heuristic theory, the central role played by the conjecture 
(1.19) in deriving the above results should be noted. For example, suppose more 
generally that y r =  y + b - l + g ( b ) ,  where g ( b )  is an arbitrary function of b. Then 
(5.7) becomes 

(5.14) 

If the above kind of argument is to work at all, then we must have g (  b )  =constant = g,  
say. Since y r  must equal y for b = 1, we are automatically led to g ( 1 )  = g = 0 and 
hence to the conjecture (1.19) for y p  

6. Discussion and summary 

In this paper we have considered the problem of lattice trees with a specified topology. 
For the simple examples studied here, the number (n) of vertices in the cluster and 
the numbers (n,) of branching points of degree i ( i  = 3,4,  . . . , q )  specify the topology 
uniquely. Lipson and Whittington (1983) have proved rigorously that weakly embed- 
dable trees have a growth constant of ,U, the SAW limit. In § 2 we have proved a similar 
result for strongly embeddable trees. The growth constant is then 0, the neighbour- 
avoiding walk limit. 

In § 1 we have presented an appealingly simple (but certainly non-rigorous) argu- 
ment which, nevertheless, predicts the correct growth constant. For the critical 
exponents, it gives yr = yr  = y + b - 1, which we have adopted as a conjecture. Here y 
is the critical exponent for SAWS and b, the number of branches in the topology under 
consideration, is determined by (n3 ,  n 4 , .  . . , nq) .  This conjecture is of course correct 
for simple chains ( b  = 1) and satisfies the exact upper bounds derived in § 2 .  
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In 9 3 we have derived and analysed exact enumeration data and our estimates of 
the critical exponents are consistent with the above conjecture. 

The conjectured relation reduces correctly to the Bethe result yt = yT = b, as may 
readily be verified from (4.18) and (4.24). At the critical dimension ( d ,  = 4), the Bethe 
result for the critical exponents is expected to be exact and in 9 4 we have tested this 
explicitly in the case of stars with b = 3 branches. Also in 9 4 we have derived 
expansions, in inverse powers of cr = 2d - 1, for the growth constants associated with 
various topologies and these expansions are consistent with the rigorous results proved 
in 9 2 and by Lipson and Whittington (1983). 

In 9 5 we have considered the relationship between our results for lattice trees with 
a specified topology and unrestricted lattice trees. We have shown that the particular 
expression which we conjecture for yt is a crucial ingredient in an heuristic theory 
which shows how the universality class for branched polymers without cycles is deter- 
mined solely by the tree exponent Bo and is independent of the branching fugacity (at 
least in the vicinity of the tree limit). This conclusion is consistent with position space 
renormalisation group calculations. 

In conclusion, we have argued that the critical exponent associated with a lattice 
tree with a specified topology depends simply on the number, 6, of branches and not 
on any other details of the topology. 
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Appendix 1. Data for weak embeddings 

3 4 
4 36 1 
5 192 12 18 
6 872 78 222 12 
7 3 508 404 1742  76 168 2 
8 13 252 1833  10 614 1372 1444 30 
9 47 320 7 624 5 5  894 14 040 9 680 272 

10 163 312 29 756 264 638 108 960 5 5  396 1 9 5 2  
11 545 580 110 768 1 163 132 706 020 283 576 11 990 
12 1 784 044 397 185 4 815 952 4 041 068 1 336 456 65 778 
13 5711 504 1382036 19 054 456 21 047 436 5 905 584 331 146 
14 18 017008 4691 614 72 551 748 101 966 068 24 789 504 1557 178 
15 5 5  997 476 
16 172 169 884 
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Appendix 2. Data for strong embeddings 

Table A2.1. Square lattice. 

n S ( n ;  3) S ( n ;  4) C ( n ;  2) C ( n ;  3) B ( n ;  1,2)  B ( n ;  2,2) 

4. 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

4 
20 1 
84 4 

308 18 
1048 68 
3 312 243 

10 108 800 
29756 2552 
85756 7824 

241416 23437 
670240 68472 

1830 532 196 842 
4949 880 555 932 

4 
46 

306 
1614 
7 166 

29 018 
108 714 
386 890 

1315 314 
4f326 290 
13 802 094 

4 
84 

856 
5 968 

34 408 
171 848 
780 964 

3286 364 
13 057 992 

12 
96 2 

576 14 
2 752 84 

11 888 396 
46 904 1716 

174 868 6 792 
619 800 25 504 

2118 384 91 216 
~~ ~ 

Table A2.2. Triangular lattice. 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

2 
18 

108 
516 

2 232 
8 940 

34 164 
125 580 
448 794 

1566 452 

3 
45 

369 6 
2 391 102 

13 305 1068 
67 104 8 640 

314 076 59 340 
1389 582 361 728 

Table A2.3. Simple cubic lattice. 

n S(n ;3 )  S(n;4)  S(n ;5 )  S (n ;6 )  C ( n ;  2) C ( n ;  3) B ( n ;  1,2) B ( n ;  2,2) 

4 20 
5 204 15 
6 1572 156 6 126 
7 10 188 1290 54 1 2 460 132 
8 60 840 8 964 438 6 28 176 1080 3 108 18 
9 339 336 57 321 3030 45 256 824 29 184 39 528 768 

10 1817396 341088 19602 296 2010744 456756 393816 11694 
11 9381300 1940448 118530 1854 14290968 5344740 3324528 132444 
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Appendix 3. s(n; 3) stars weakly embeddable in the diamond (D), body-centred 
cubic (BCC) and face-centred cubic (FCC) lattices (McKenzie 1967) 

n D BCC FCC 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

4 
36 

216 
1080 
4 740 

19 404 
75 336 

282 096 
1023 852 

56 
1176 

15 600 
173 264 

1715 688 
15 877080 

139 405 088 
1 180 737 072 
9703453656 

77 978 223 624 

220 
6 780 

138 432 
2 346 856 

35 727 756 
506 854 812 

6 839 985 144 
88924734720 
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