Lattice trees with specified topologies

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1984 J. Phys. A: Math. Gen. 17211
(http://iopscience.iop.org/0305-4470/17/1/022)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 06:52

Please note that terms and conditions apply.

Lattice trees with specified topologies

D S Gaunt ${ }^{\dagger}$, J E G Lipson \ddagger, J L Martin†, M F Sykes $\dagger, ~ G ~ M ~ T o r r i e §, ~$ S G Whittington \ddagger and M K Wilkinson \dagger
\dagger Department of Physics, King's College, Strand, London WC2R 2LS, UK
\ddagger Department of Chemistry, University of Toronto, Toronto, Canada M5S 1A1
§ Department of Mathematics and Computer Science, Royal Military College, Kingston, Canada K7L 2W3

Received 12 August 1983

Abstract

In this paper we study the total numbers of latice trees with specified topologies. For strongly embeddable (or site) clusters with n, branching points of degree i, we show how to prove rigorously that the growth constants exist and are all equal to the neighbouravoiding walk limit u. (This extends earlier work by Lipson and Whittington who proved an analogous result for weakly embeddable (or bond) clusters, for which the corresponding growth constant is the self-avoiding walk limit μ.) We derive some exact upper bounds for the critical exponents associated with the 'star', 'comb' and 'brush' topologies.

Exact enumeration data are derived and analysed for both weak and strong embeddings of some stars, combs and brushes on the square, triangular, simple cubic and $d=4$ simple hypercubic lattices. We argue that the universality class for lattice trees with specified topology depends on the number, b, of branches, possibly through the conjectured critical exponent $(y+b-1)$, but not on any other details of the topology. Here γ is the critical exponent associated with self-avoiding walks.

We have also derived some exact enumeration data for the general d-dimensional simple hypercubic lattice. Using these data and the exact results for the interior of a Bethe lattice, we derive expansions for the growth constants in inverse powers of the dimensionality. These results are consistent with the growth constants being equal to the appropriate walk limits (μ or ν).

We discuss the relationship of our work to renormalisation group results which suggest that the universality class of branched polymers is independent of the branching fugacity.

1. Introduction

Branched polymer molecules with excluded volume have been modelled as lattice animals, i.e. as connected clusters embeddable in a regular lattice (Lubensky and Isaacson 1979). A number of workers (Lubensky and Isaacson 1979, Family 1980, Daoud and Joanny 1981) have used renormalisation group ideas to discuss the importance of cycles on their properties, arguing that the universality class is independent of the cycle fugacity. To investigate this point further, lattice trees (i.e. connected clusters having no cycles) have been studied using series expansion methods (Duarte and Ruskin 1981, Gaunt et al 1982) and Monte Carlo techniques (Seitz and Klein 1981). This evidence suggests that lattice trees and lattice animals are in the same universality class. So, for example, suppose that the number, a_{n}, per lattice site of weakly embeddable lattice animals with n vertices has the usual asymptotic form

$$
\begin{equation*}
a_{n} \sim n^{-\theta} \lambda^{n} \quad(n \rightarrow \infty) \tag{1.1}
\end{equation*}
$$

where λ is the growth constant for animals and θ is the associated critical exponent, and let the analogous form for the number, $a_{n 0}$, per lattice site of weakly embeddable lattice trees with n vertices be

$$
\begin{equation*}
a_{n 0} \sim n^{-\theta_{0}} \lambda_{0}^{n} \quad(n \rightarrow \infty) . \tag{1.2}
\end{equation*}
$$

Then one finds (Gaunt et al 1982), for simple hypercubical lattices of coordination number $q=2 d$ and dimensionality $d=2,3, \ldots, d_{c}$ where $d_{c}(=8)$ is the upper critical dimension, that

$$
\begin{equation*}
\theta_{0}=\theta \tag{1.3}
\end{equation*}
$$

and, incidentally, that

$$
\begin{equation*}
\lambda_{0}<\lambda \tag{1.4}
\end{equation*}
$$

The result (1.3) appears to support the renormalisation group contention that the universality class is independent of the cycle fugacity.

In order to investigate the crossover from trees to animals, Whittington et al (1983) considered the numbers, $a_{n c}$, per lattice site of weakly embeddable clusters with n vertices and cyclomatic index c. Assume that asymptotically the number of such c-animals goes like

$$
\begin{equation*}
a_{n c} \sim n^{-\theta_{c}} \lambda_{c}^{n} \quad(n \rightarrow \infty) \tag{1.5}
\end{equation*}
$$

for all c. Whittington et al (1983) have shown rigorously that the growth constant λ_{c} is independent of c, i.e.

$$
\begin{equation*}
\lambda_{c}=\lambda_{0} \quad(c=0,1,2, \ldots) \tag{1.6}
\end{equation*}
$$

and have presented convincing evidence that the associated critical exponent θ_{c} varies as c varies. More precisely, the observed c-dependence of θ_{c} supports the conjecture that

$$
\begin{equation*}
\theta_{c}=\theta_{0}-c \quad(c=0,1,2, \ldots) \tag{1.7}
\end{equation*}
$$

The implication of (1.3) and (1.7) is that although trees and (unrestricted) animals are in the same universality class, c-animals $(c=1,2,3, \ldots)$ are all in different universality classes. At first sight, this conclusion does not seem to support the field theory arguments which suggest that the exponent is independent of cycle fugacity. However, Whittington et al (1983) have presented an heuristic argument-a crucial element of which is the conjectured c-dependence of θ_{c}-which shows how their results may be reconciled with the field theory prediction.

We have presented the above introduction to existing results in terms of weakly embeddable (or bond) clusters since, in this case, some of the steps can be proven rigorously. However, numerical evidence and general universality considerations indicate that precisely analogous results hold in the case of strongly embeddable (or site) clusters (Gaunt et al 1982, Whittington et al 1983).

This paper is concerned with the growth constants and the critical exponents associated with the total numbers of lattice trees with n sites and specified topologies. Of particular interest will be the way in which the critical exponent depends-if at all-on parameters associated with the specific topology, e.g. the number (b) of branches, the number (n_{i}) of branching points of degree $i(i=3,4, \ldots, q)$, the number $\left(n_{1}\right)$ of 'dangling ends' (i.e. vertices of degree 1), etc. The simplest type of tree is the chain with the topology shown in figure $1(a)$; more complicated topologies are shown

Figure 1. Examples of simple topologies: (a) simple chain, (b) star, (c) comb, (d) brush.
in figures $1(b),(c)$ and (d). (Throughout figure 1 , all vertices of degree 2 have been suppressed since they do not affect the topology or consequently the structure of the branched polymer.)

The topology of the simple chain (see figure $1(a)$) clearly has a single branch $(b=1)$ and two dangling ends ($n_{1}=2$). To deal with the more complicated topologies in figure 1 , we define-quite generally-a branch of the topology as a segment of simple chain terminated at each end by either a dangling end or a branching point. For the topologies shown in figure $1, b=1,5,7$ and 8 , respectively. Using Euler's law of the edges it follows that

$$
\begin{equation*}
b=n^{+}-1+n_{1}, \tag{1.8}
\end{equation*}
$$

where $n^{+}=\sum_{i=3}^{q} n_{i}$ is the total number of vertices with degree greater than two, i.e. the total number of branching points. Alternatively, we may use Euler's law to show that

$$
\begin{equation*}
n_{1}=2+\sum_{i=3}^{q}(i-2) n_{i} \tag{1.9}
\end{equation*}
$$

and, hence, that both n_{1} and

$$
\begin{equation*}
b=1+\sum_{i=3}^{q}(i-1) n_{i} \tag{1.10}
\end{equation*}
$$

are determined by the integer set $\left(n_{3}, n_{4}, \ldots, n_{q}\right)$.
The statistics of simple chains (see figure $1(a)$) are already well known, see for example the reviews by McKenzie (1976) and Whittington (1982). If c_{n} is the number of weakly embeddable chains with n sites, then asymptotically one writes

$$
\begin{equation*}
c_{n} \sim n^{\gamma-1} \mu^{n} \quad(n \rightarrow \infty) \tag{1.11}
\end{equation*}
$$

where μ is the self-avoiding walk (SAW) limit and γ is the associated critical exponent. For two-dimensional lattices, we have the presumably exact value (Nienhuis 1982) of

$$
\begin{equation*}
\gamma=1 \frac{11}{32}=1.34375 \quad(d=2) \tag{1.12}
\end{equation*}
$$

while in three dimensions the most precise estimate of γ, namely

$$
\begin{equation*}
\gamma=1.1615 \pm 0.0020 \quad(d=3) \tag{1.13}
\end{equation*}
$$

has been obtained from renormalisation group field-theoretic calculations (Baker et al 1978, Le Guillou and Zinn-Justin 1980). Estimates of γ from exact enumeration
techniques (Watts 1975, and references therein) are very close to the values given in (1.12) and (1.13). For the SAw problem, the classical value of γ is $\gamma=1$ and the upper critical dimension is $d_{c}=4$, which implies that

$$
\begin{equation*}
\gamma=1 \quad(d \geqslant 4) . \tag{1.14}
\end{equation*}
$$

The topologies in figures $1(b)$ and (c) are examples of 'stars' and 'combs', respectively (de Gennes 1979). More generally, let us define $s(n ; b)$ to be the number of weakly embeddable stars with a total of n sites and b branches, and denote by $c(n ; t)$ the number of weakly embeddable combs with n sites and t 'teeth'. We have called the topology in figure $1(d)$ a 'brush' and, more generally, will use $b\left(n ; m_{1}, \ldots, m_{t}\right)$ to denote the number of weak embeddings with n sites and t 'bristles' of multiplicities $m_{1}, m_{2}, \ldots, m_{t}$, respectively. For combs and brushes, the number of branches is given by

$$
\begin{equation*}
b=\sum_{i=1}^{t} m_{i}+t+1 \tag{1.15}
\end{equation*}
$$

(Note that $s(n ; 3) \equiv c(n ; 1)$ and $s\left(n ; b^{\prime}\right) \equiv b\left(n ; b^{\prime}-2\right)$ for $b^{\prime} \geqslant 3$.) The topology in figure $1(c)$ may be regarded as either a comb with $t=3$ teeth or as a brush with $t=3$ bristles with multiplicities $m_{1}=m_{2}=m_{3}=1$. The brush in figure $1(d)$ has $t=2$ bristles with $m_{1}=2, m_{2}=3$.

For complicated topologies, the acquisition of exact enumeration data becomes rapidly more difficult. Consequently, all the topologies that we study in detail in § 3 are simple examples of either stars, combs or brushes. For all these topologies, it has been proved (Lipson and Whittington 1983) that the growth constants exist and are all equal to the Saw limit μ. More precisely, Lipson and Whittington (1983) have proved that

$$
\begin{equation*}
\lim _{n \rightarrow x} n^{-1} \log t\left(n ; n_{3}, n_{4}, \ldots, n_{q}\right)=\log \mu \tag{1.16}
\end{equation*}
$$

where $t\left(n ; n_{3}, n_{4}, \ldots, n_{q}\right)$ is the number, per lattice site, of trees with n vertices and a specified number n_{i} of vertices of degree $i(i=3,4, \ldots, q)$, weakly embeddable in a d-dimensional hypercubic lattice. Note that knowledge of n, n_{3}, n_{4}, \ldots is sufficient to determine not only n_{1} from (1.9) but also n_{2} through

$$
\begin{equation*}
n_{2}=n-n_{1}-n^{+}=n-2-\sum_{i=3}^{q}(i-1) n_{i} . \tag{1.17}
\end{equation*}
$$

The rigorous result in (1.16) proves extremely useful for the series analysis which we perform in $\S 3(d=2,3)$ and $\S 4(d=4)$ on the exact enumeration data and enables us to focus attention on the associated critical exponents. Assuming the expected asymptotic form

$$
\begin{equation*}
t\left(n ; n_{3}, n_{4}, \ldots, n_{q}\right) \sim n^{\gamma_{t}-1} \mu^{n} \quad(n \rightarrow \infty) \tag{1.18}
\end{equation*}
$$

we estimate γ_{t} and find that the data are consistent with

$$
\begin{equation*}
\gamma_{t}=\gamma+b-1 \tag{1.19}
\end{equation*}
$$

in all the cases studied.
It should be noted, however, that values of $n_{3}, n_{4}, \ldots, n_{q}$ do not necessarily specify a unique topology. For example, both of the topologies in figure 2 have $n_{3}=4$, $n_{4}=n_{5}=\ldots=0$ and yet are distinct. It follows that although (1.16) is sufficient to

Figure 2. Distinct topologies both having four vertices of degree 3 and none of higher degree.
prove that the growth constant is μ for topologies as simple as the ones we study in $\S 3$, it does not establish this result for an arbitrary topology. Nevertheless, we expect the growth constant to be μ for all topologies. Some relevant rigorous results are presented in § 2. In addition, we expect each of the distinct topologies associated with a given set of integers ($n_{3}, n_{4}, \ldots, n_{q}$) to have the same critical exponent, (1.19), as their union. (This is because all topologies associated with the set ($n_{3}, n_{4}, \ldots, n_{q}$) must have, from (1.10), the same number of branches.)

The result (1.19) is a conjecture. Besides being consistent with the exact enumeration data (see $\S \S 3$ and 4 and table 2), it of course agrees with (1.11) in the case of simple chains ($b=1$), it satisfies the exact upper bounds derived in § 2 (see also table 2) and is the correct result for the Bethe approximation (see §4). In addition, we give in its support two different arguments, both heuristic in nature. The first of these depends upon a result which we prove rigorously in § 2. Consider a 'realisation' of a specific topology and allow the length of one of its branches to increase indefinitely while the lengths of the other branches remain fixed. Then, according to a theorem proved in $\S 2$, the growth constant for this sequence of realisations of the given topology is μ. Furthermore, we expect the critical exponent to be chain-like since the large n behaviour should be dominated by the branch whose length is allowed to grow indefinitely and be essentially unaffected by the branches of fixed lengths. This gives a factor of $n^{\nu-1} \mu^{n}$ for this sequence of realisations. The number of realisations of any given topology increases like n^{b-1} as $n \rightarrow \infty$ (Gupta et al 1958, Domb and Heap 1967), and so overall we might reasonably expect asymptotic behaviour of the form $n^{b-1} n^{\gamma-1} \mu^{n}$. Not only does this simple argument give a growth factor of μ, in agreement with the rigorous result (1.16), but comparison with (1.18) yields the conjectured form. (1.19), for γ_{r}. A hidden assumption in the above argument is that equal amplitudes are associated with each of the sequences of realisations. In fact, numerical analysis (unpublished work) of several sequences suggests more complicated behaviour and the above treatment, therefore, implicitly assumes a constant 'effective amplitude'.

The second of the heuristic arguments to support (1.19) is presented in $\S 5$ and is analogous to the one given by Whittington et al (1983) in support of their conjecture (1.7). The idea is to show how the conjecture (1.19) and the rigorous result (1.16) are crucial ingredients in an heuristic theory designed to demonstrate that the universality class for branched polymers without cycles is independent of the branching fugacity $z>0$. The introduction of branching fugacities is a natural device in the field-theoretic treatment of branched polymers (Lubensky and Isaacson 1979) and our conclusion that the universality class is independent of branching fugacity was anticipated in the position space renormalisation group calculations of Family (1980).

In $\S 3$ the problem of strongly embeddable (or site) lattice trees with a specified topology is also studied. (We use the upper case letters $S(n ; b), C(n ; t)$ and $B\left(n ; m_{1}, m_{2}, \ldots, m_{t}\right)$ to denote the numbers of strongly embeddable stars, combs and
brushes, respectively.) We assume, in analogy with (1.18), an asymptotic form

$$
\begin{equation*}
T\left(n ; n_{3}, n_{4}, \ldots, n_{q}\right) \sim n^{\gamma_{T}-1} v^{n} \quad(n \rightarrow \infty) \tag{1.20}
\end{equation*}
$$

since it follows rigorously from $\S 2$ that the dominant behaviour is determined by the growth constant v for neighbour-avoiding walks (Whittington 1982), i.e. strongly embeddable saws. From an analysis of the exact enumeration data, we estimate γ_{T} and find evidence supporting the universality conjecture

$$
\begin{equation*}
\gamma_{T}=\gamma_{r} . \tag{1.21}
\end{equation*}
$$

In § 4 we give the numbers of undirected neighbour-avoiding walks on a d dimensional simple hypercubic lattice, for arbitrary integral d and up to $n=9$ sites. We use these expressions to derive an expansion for v in inverse powers of $\sigma(=2 d-1)$ correct through order σ^{-3}. We follow a similar procedure for strongly embeddable stars with three branches and up to $n=9$ sites. In this case, the $1 / \sigma$ expansion for the growth constant is derived through order σ^{-2} and agrees term by term with the corresponding expansion for v. This finding is consistent with the rigorous results of § 2. Similar results have been obtained for weakly embeddable trees with a given topology.

Finally, in § 6, our results are summarised and discussed.

2. Invariance of growth constants and bounds on exponents for simple branched trees

In this section we consider the set of trees with n vertices, n_{3} of degree $3, n_{4}$ of degree 4 , etc, strongly embeddable in the d-dimensional hypercubic lattice. We show that, for a certain subset of these trees, allowing the number of edges in one of the simple chains to go to infinity yields a growth constant which is the same as the corresponding growth constant for neighbour-avoiding walks. Similar arguments can be constructed relating the growth constants of weakly embeddable trees and self-avoiding walks. We then proceed to derive bounds on the corresponding critical exponents for some simple topologies.

We first need some results on neighbour-avoiding walks. Let C_{n} be the number of undirected neighbour-avoiding walks with n vertices. By arguments exactly analogous to those of Hammersley and Morton (1954) for SAWs, it is easy to show that there exists a finite positive constant v such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{-1} \log C_{n}=\inf _{n>0} n^{-1} \log C_{n}=\log v . \tag{2.1}
\end{equation*}
$$

Consider the subset ($U_{n}(k)$) of undirected neighbour-avoiding walks with n vertices whose two vertices of unit degree are the sole members of vertex subsets having largest and smallest values respectively of some specified coordinate, k. Using an unfolding transformation analogous to that used by Hammersley and Welsh (1962) it is easy to show that the number, B_{n}, of such walks satisfies

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{-1} \log B_{n}=\sup _{n>0} n^{-1} \log B_{n}=\log v \tag{2.2}
\end{equation*}
$$

i.e., the two sets of walks have the same growth constant.

We represent a particular topological class of trees (e.g. one of the classes shown in figure 1) by a homeomorphically irreducible graph G. Choose a pair of vertices v_{a} and v_{b} which are adjacent in G. In other words v_{a} and v_{b} are joined by a simple chain in a realisation of the tree. Removing the edge joining v_{a} and v_{b} in G decomposes the graph into two connected components G_{a} and G_{b} which contain v_{a} and v_{b} respectively. Suppose that it is possible to find two integers n_{a} and n_{b} such that one can construct strongly embeddable realisations of G_{a} and G_{b}, containing n_{a} and n_{b} vertices respectively. Suppose in addition that for some k, v_{a} belongs to the vertex subset with largest k-coordinate in the embedding of G_{a} and v_{b} belongs to the vertex subset with smallest k-coordinate in the embedding of G_{b}. For an example relevant to the following argument see figure 3. Translate the embedding of G_{a} so that v_{a} is at the origin. For each $u \in U_{m}(k)$ translate u so that the unit degree vertex with smallest k-coordinate is at $x_{k}=1, x_{j}=0, \forall j \neq k$. Suppose that the other unit degree vertex of u has coordinates ($x_{1}^{0}, x_{2}^{0}, \ldots, x_{k}^{0}, \ldots$). Translate the embedding of G_{b} such that the coordinates of v_{b} are $\left(x_{1}^{0}, x_{2}^{0}, \ldots, x_{k}^{0}+1, \ldots\right)$. By adding the two appropriate edges to join the unit degree vertices of u to v_{a} and v_{b} we have constructed a realisation of G with ($n_{a}+n_{b}+m$) vertices which is strongly embeddable in the lattice. Since there are B_{m} such simple chains and, by hypothesis, at least one strong embedding of the realisations of G_{a} and G_{b}, the number of strong embeddings with n vertices, $T_{G}(n)$, of the topological class represented by the graph G is bounded below as

$$
\begin{equation*}
T_{G}(n) \geqslant B_{n-n_{a}-n_{b}} \tag{2.3}
\end{equation*}
$$

Figure 3. Example of a construction of G from G_{a}, G_{b} and a neighbour-avoiding walk.

Taking logarithms, fixing n_{a} and n_{b} and letting n tend to infinity, (2.2) and (2.3) imply that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \inf n^{-1} \log T_{G}(n) \geqslant \log v \tag{2.4}
\end{equation*}
$$

To construct an upper bound we note that the arguments given by Lipson and Whittington (1983) for an upper bound on weak embeddings with specified n_{3}, n_{4}, \ldots can be taken over mutatis mutandis to this problem, with saws replaced by neighbouravoiding walks. This argument shows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup n^{-1} \log T_{G}(n) \leqslant \log v . \tag{2.5}
\end{equation*}
$$

Then (2.4) and (2.5) imply

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{-1} \log T_{G}(n)=\log v \tag{2.6}
\end{equation*}
$$

To apply this general result to some of the topologies with which we are especially concerned in this paper, we note that choosing G_{a} to be a single vertex and G_{b} to be a star with s vertices, $s-1$ of degree 1 and one of degree $s-1$ (the degree $(s-1)$
vertex being labelled v_{b}), it follows that stars with s branches have growth constant v. Similarly if we choose G_{a} to be a star with s^{\prime} vertices, $s^{\prime}-1$ of degree 1 and one of degree $s^{\prime}-1$ (with the vertex of degree $s^{\prime}-1$ labelled v_{a}), then concatenating this G_{a} with the above G_{b} through each member of a set of appropriate simple chains shows that this kind of brush with two vertices of degree s and s^{\prime} has growth constant v. Similar arguments can be constructed for other topologies.

We have focused on the specific case in which one simple chain in the graph becomes infinite; these arguments also establish the invariance of the growth constant when any number of simple chains in the graph grow to infinity.

We now consider bounds on the associated critical exponents (defined for instance through (1.18)). The arguments given will be for strong embeddings but analogous reasoning can be applied to the case of weak embeddings.

The general approach for deriving upper bounds will be to construct the graph from a set of neighbour-avoiding walks; since these walks are not necessarily mutually avoiding this will yield an upper bound on the appropriate number of embeddings.

Consider a star with b branches. If b is even this star can be constructed from $b / 2$ neighbour-avoiding walks, which intersect at a common vertex (which is not of unit degree for any walk). The number of embeddings of the b-star with n vertices is then bounded above by
$S(n ; b) \leqslant \sum_{m_{1}} \sum_{m_{2}} \ldots \sum_{m_{b / 2}} C_{m_{1}} C_{m_{2}} \ldots C_{m_{b / 2}}\left(m_{1}-2\right)\left(m_{2}-2\right) \ldots\left(m_{b / 2}-2\right)$
where

$$
\begin{equation*}
m_{l} \geqslant 3 \quad \forall l \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
m_{1}+m_{2}+\ldots+m_{b / 2}=n+\frac{1}{2} b-1 \tag{2.9}
\end{equation*}
$$

The factors $\left(m_{1}-2\right)$ etc arise from the number of ways of choosing the common vertex in each walk. Assuming the usual asymptotic form

$$
\begin{equation*}
C_{n} \sim n^{\gamma-1} v^{n} \tag{2.10}
\end{equation*}
$$

where γ is thought to be the same for self-avoiding and neighbour-avoiding walks (Watson 1970),

$$
\begin{align*}
\sum_{m_{1}} \sum_{m_{2}} \ldots \sum_{m_{b / 2}} & C_{m_{1}} C_{m_{2}} \ldots C_{m_{b / 2}}\left(m_{1}-2\right)\left(m_{2}-2\right) \ldots\left(m_{b / 2}-2\right) \\
& \sim \sum_{m_{1}} \sum_{m_{2}} \ldots \sum_{m_{b / 2}}\left(m_{1} m_{2} \ldots m_{b / 2}\right)^{\gamma} v^{n} \\
& \leqslant A n^{(b / 2)-1} n^{(b / 2) \gamma} v^{n} \\
& =A n^{(b / 2)(\gamma+1)-1} v^{n} . \tag{2.11}
\end{align*}
$$

Hence, if

$$
S(n ; b) \sim n^{\gamma_{s . b}-1} v^{n}
$$

(2.8) and (2.11) give

$$
\begin{equation*}
\gamma_{S, b} \leqslant \frac{1}{2} b(\gamma+1), \quad b \text { even } \tag{2.12}
\end{equation*}
$$

A similar argument for b odd yields

$$
\begin{equation*}
\gamma_{S, b} \leqslant \frac{1}{2} b(\gamma+1)+\frac{1}{2}(\gamma-1), \quad b \text { odd } \tag{2.13}
\end{equation*}
$$

For other cases, such as a brush having t bristles with multiplicities m_{1}, m_{2}, \ldots, we proceed in an analogous manner. The number of branches, b, will be given by (1.15) and there will be $\mathrm{O}\left(n^{b-1}\right)$ ways of distributing the edges among the different branches. The brush can be constructed from $1+\Sigma_{i} m_{i}$ neighbour-avoiding walks (the 'backbone' of the brush and the bristles). It is then easy to show that an upper bound on the exponent $\gamma_{B, m_{1}, m_{2}, \ldots}$ is given by

$$
\begin{equation*}
\gamma_{B, m_{1}, m_{2}, \ldots}-1 \leqslant b-1+(\gamma-1)\left(1+\sum m_{i}\right) \tag{2.14}
\end{equation*}
$$

or

$$
\begin{equation*}
\gamma_{B, m_{2}, m_{2} \ldots} \leqslant \gamma(b-t)+t \tag{2.15}
\end{equation*}
$$

In the special case of a comb this becomes

$$
\begin{equation*}
\gamma_{C, t} \leqslant \gamma(t+1)+t \tag{2.16}
\end{equation*}
$$

For teeth with multiplicities greater than one the bound (2.15) can be improved by using one neighbour-avoiding walk to make up two bristles in a manner similar to that described above for stars.

It is also easy to show that the exponent for each of these topologies is bounded below by the SAW exponent γ.

It is interesting to note that for dimensionality $d \geqslant d_{c}$, when according to (1.14) we have $\gamma=1$, the upper bounds (2.12), (2.13), (2.15) and (2.16) all coincide with our conjecture (1.19) which reduces to $\gamma_{t}=b$. More generally, for arbitrary d, these bounds imply that $\gamma_{t}=\mathrm{O}(b)$, which rules out the possibility of powers of b greater than the first.

3. Series derivation and analysis: $\boldsymbol{d}=\mathbf{2}$ and $\mathbf{3}$

We have derived exact enumeration data for stars, combs and brushes, both weakly and strongly embeddable in the square, triangular and simple cubic lattices. The data for weak embeddings are presented in appendix 1 and those for strong embeddings in appendix 2. (Note that in the appendices and throughout this section we use n to denote the number of bonds (sites) for weak (strong) embeddings. Although we have found it more convenient to use different conventions in other sections, no confusion should arise in practice.) Data for the stars $s(n ; 3)$ weakly embeddable in the triangular, diamond, simple cubic, body-centred cubic and face-centred cubic lattices have been given by McKenzie (1967) through orders $n=10,11,12,12$ and 10 bonds, respectively. With this exception the data in appendices 1 and 2 appear to be new. We reproduce McKenzie's data, which are somewhat inaccessible, for the diamond, body-centred cubic and face-centred cubic lattices in appendix 3.

For both weak and strong embeddings, we have considered stars with $b=3,4,5$ and 6 branches, combs with $t=2$ and 3 teeth, and brushes with $t=2$ bristles either with multiplicities one and two or both of multiplicity two. For strong embeddings, the data extend through $n=16,13$ and 11 sites for the square, triangular and simple cubic lattices, respectively. (Note, however, that for the triangular lattice $S(n ; b)=0$ for all n for $b=4,5$ and 6 and that there are no brushes, i.e. $B\left(n ; m_{1}, m_{2}, \ldots, m_{t}\right)=0$ for all possible n and $\left\{m_{i}\right\}$.) For weak embeddings, the extent of our data depends not only on the lattice but also on the topology; in the most favourable cases the data are
through $n=16,14$ and 14 bonds for the square, triangular and simple cubic lattices, respectively.

For the strong embeddings, the data were derived by first enumerating (by computer) all lattice trees with n sites ($n=1,2,3, \ldots$) and then classifying them according to the integer set $\left(n_{3}, n_{4}, \ldots, n_{q}\right)$. As we saw in $\S 1$, simple topologies are specified uniquely by such a set. A similar procedure was used to derive the data for weak embeddings through $n=14,10$ and 10 bonds for the square, triangular and simple cubic lattices, respectively. Larger values of n are impracticable by this technique since they are too expensive in computer time. However, in the case of the weak embeddings, some additional data have been derived by computer enumeration of all possible realisations, for a given n, of a specified topology. The numbers of possible realisations for various topologies and values of n are given in table 1. (As mentioned in $\S 1$, these numbers are known to increase asymptotically like n^{b-1} for all topologies.) This technique too is soon limited by the available computing time.

Table 1. Numbers of possible realisations for various topologies and $n \leqslant 20$.

n	$s(n ; 3)$	$s(n ; 4)$	$s(n ; 5)$	$s(n ; 6)$	$c(n ; 2)$	$c(n ; 3)$	$b(n ; 1,2)$
3	1						
4	1	1					
5	2	1	1		1		
6	3	2	1	1	2		1
7	4	3	2	1	5	1	3
8	5	5	3	2	9	3	8
9	7	6	5	3	17	10	17
10	8	9	7	5	27	24	33
11	10	11	10	7	43	55	58
12	12	15	13	11	63	109	97
13	14	18	18	14	92	206	153
14	16	23	23	20	127	360	233
15	19	27	30	26	174	606	342
16	21	34	37	35	230	970	489
17	24	39	47	44	302	1508	681
18	27	47	57	58	386	2264	930
19	30	54	70	71	490	3322	1245
20	33	64	84	90	610	4750	1641

We have analysed all the data given in the appendices using standard series analysis methods (Gaunt and Guttmann 1974). For example, for the star $s(n ; 3)$ weakly embeddable in the square lattice we have plotted against $1 / n$ in figure 4 the ratios $r_{n}=s(n ; 3) / s(n-1 ; 3)$, the linear extrapolants $r_{n}^{\prime}=\frac{1}{2}\left[n r_{n}-(n-2) r_{n-2}\right]$ from alternate points and their averages $r_{n}^{\prime \prime}=\frac{1}{2}\left(r_{n}+r_{n}^{\prime}\right)$. According to (1.16), all these plots should approach μ as $n \rightarrow \infty$. The arrow in figure 4 indicates the unbiased estimate of μ given by Watts (1975). The corresponding evidence for the triangular, diamond, simple cubic, body-centred cubic and face-centred cubic lattices is equally satisfactory. Note that for the close-packed lattices, the extrapolants r_{n}^{\prime} have been calculated from adjacent points, i.e. $r_{n}^{\prime}=n r_{n}-(n-1) r_{n-1}$.

The exponent $\gamma_{s, 3}$ can be estimated from the sequence of biased estimates

$$
\gamma_{s, 3}(n)=1+n\left[\left(r_{n} / \hat{\mu}\right)-1\right]
$$

where $\hat{\mu}$ is an estimate of μ for which we have used the unbiased estimate of Watts (1975). We also form linear extrapolants

$$
\gamma_{s, 3}^{\prime}(n)=\left[n \gamma_{s, 3}(n)-(n-m) \gamma_{s, 3}(n-m)\right] / m
$$

from alternate points ($m=2$) for loose-packed lattices or adjacent points ($m=1$) for close-packed lattices and the averages

$$
\gamma_{s, 3}^{\prime \prime}(n)=\frac{1}{2}\left[\gamma_{s, 3}(n)+\gamma_{s, 3}^{\prime}(n)\right]
$$

Plots of $\gamma_{s, 3}(n), \gamma_{s, 3}^{\prime}(n)$ and $\gamma_{s, 3}^{\prime \prime}(n)$ against $1 / n$ are given in figure 5 for the square and triangular lattices. Similar plots are obtained in three dimensions. Our best estimates of $\gamma_{s, 3}$ are

$$
\begin{align*}
\gamma_{s, 3} & =3.2 \pm 0.25 & & (d=2) \tag{3.1}\\
& =3.15 \pm 0.30 & & (d=3) \tag{3.2}
\end{align*}
$$

We have analysed, using numerical techniques identical to those outlined above, our data for combs, brushes and the remaining stars with $b=4,5$ and 6 branches. Some typical plots are shown in figures 6 and 7. In figure 6 we plot, against $1 / n$, estimates of $\gamma_{c, 2}$ for combs with $t=2$ teeth on the square and triangular lattices.

Figure 6. Plots against $1 / n$ of biased ratio estimates of $\gamma_{c, 2}$ for weak embeddings of the comb $c(n ; 2)$ on the square (\square) and triangular (\triangle) lattices. The conjectured exponent $(\gamma+4)$ is indicated by an arrow.

Figure 7. Plots against $1 / n$ of biased ratio estimates of $\gamma_{b, 1,2}$ for weak embeddings of the brush $b(n ; 1,2)$ on the simple cubic lattice. The conjectured exponent $(\gamma+5)$ is indicated by an arrow.

Estimates of $\gamma_{b, 1,2}$ for brushes with $t=2$ bristles of multiplicities $m_{1}=1$ and $m_{2}=2$ on the simple cubic lattice are plotted against $1 / n$ in figure 7. In figures 5,6 and 7 , the exponent $(\gamma+b-1)$, as conjectured in (1.19), is indicated by an arrow and the uncertainties induced by the uncertainties in μ are less than the size of the symbols.

Our best estimates of all the critical exponents studied are presented in table 2 where they are compared with our conjectured exponent $(\gamma+b-1)$. We also give in table 2 numerical values for the exact upper bounds derived in § 2. From this table (see also figures 5, 6 and 7), we see that our results are not inconsistent with the conjecture, although other possibilities cannot be ruled out. However, it appears that the possibility of the exact inequalities (2.12) and (2.13) for stars holding as strict equalities is probably excluded by our results for stars with $b=3$ and $b=4$ branches in two dimensions.

It is not difficult to understand why the quality of our results is, in general, relatively poor. For a given topology, the most numerous realisations and those which will dominate the asymptotic behaviour are those in which all the branches are of different lengths. For a topology with b branches, one requires at least $\frac{1}{2} b(b+1)$ bonds before such a realisation can occur. The only cases where our series are at least this extensive are stars with $b=3$ and $b=4$ branches. It is in just these cases that our exponent estimates are the most precise and hence provide the strongest support for our conjecture (1.19) while apparently excluding, with some degree of confidence, our exact upper bounds for stars holding as strict equalities.
Table 2. Series estimates of critical exponents for $d=2$ and 3 dimensions. The conjectured exponent $(\gamma+b-1)$ and the exact upper bounds are given for comparison purposes.

Topology	$d=2$				$d=3$			
	Exact upper bound	$\gamma+b-1$	Series estimates		Exact upper bound	$\gamma+b-1$	Series estimates	
			Weak	Strong			Weak	Strong
Star $b=3$	3.6875	3.34375	3.2 ± 0.25	3.3 ± 0.25	3.323	3.1615	3.15 ± 0.3	3.2 ± 0.6
Star $b=4$	4.6875	4.34375	4.1 ± 0.6	4.0 ± 0.5	4.323	4.1615	4.0 ± 1.0	3.75 ± 1.25
Star $b=5$	6.03125	5.34375	5.0 ± 1.5	-	5.4845	5.1615	5.0 ± 1.5	4.25 ± 1.75
Star $b=6$	7.03125	6.34375	5.5 ± 2.0	-	6.4845	6.1615	6.0 ± 3.0	\cdots
Comb $t=2$	6.03125	5.34375	5.5 ± 2.0	5.5 ± 2.0	5.4845	5.1615	5.0 ± 3.0	4.0 ± 3.0
Comb $t=3$	8.375	7.34375	7.0 ± 5.0	7.0 ± 5.0	7.646	7.1615	\cdots	.-.
Brush $m_{1}=1, m_{2}=2$	7.375	6.34375	6.0 ± 3.0	6.0 ± 3.0	6.646	6.1615	6.0 ± 4.0	--
Brush $m_{1}=2, m_{2}=2$	8.71875	7.34375	7.0 ± 4.0	7.0 ± 4.0	7.8075	7.1615	\cdots	--

--- No estimate possible with available data.

- No embeddings possible of such topologies.

We have analysed the corresponding data for strong embeddings in exactly the same way. Provided that $\lim r_{n}$ exists, it readily follows from the lemma proved in § 2 that the ratios r_{n}, their extrapolants r_{n}^{\prime} and the averages $r_{n}^{\prime \prime}$ should all approach v as $n \rightarrow \infty$ for all the topologies that we have studied. As an example, we have plotted these quantities against $1 / n$ in figure 8 for the comb $C(n ; 2)$ on the triangular lattice. The arrow indicates the best available estimate of v (Whittington et al 1979). (Estimates of v for the square and simple cubic lattices are given by Gaunt et al 1979, 1980).) The corresponding plots for other lattices and topologies are equally satisfactory in most cases.

The ratio analysis plots for the critical exponents are numerous and rather similar to those obtained for the weak embeddings. They are therefore omitted and our best estimates of the critical exponents are given in table 2, where they may be compared with the corresponding estimates for weak embeddings and with the conjectured value $(\gamma+b-1)$. Clearly, our results are consistent with the conjecture and support the hypothesis, expressed more generally in (1.21), of universal critical exponents for both weak and strong embeddings.

Figure 8. Plots against $1 / n$ of unbiased ratio estimates of the growth parameter for strong embeddings of the comb $C(n ; 2)$ on the triangular lattice. The arrow indicates the best available estimate of v (Whittington et al 1979).

4. Expansions for hypercubical lattices

For the general d-dimensional simple hypercubic lattice, we have derived expressions for the numbers of strongly embeddable simple chains (or undirected neighbouravoiding walks) with up to $n=8$ bonds. They are
$C_{1}=\binom{d}{1}$
$C_{2}=\binom{d}{1}+4\binom{d}{2}$

$$
\begin{align*}
& C_{3}=\binom{d}{1}+12\binom{d}{2}+24\binom{d}{3} \\
& C_{4}=\binom{d}{1}+32\binom{d}{2}+168\binom{d}{3}+192\binom{d}{4} \\
& C_{5}=\binom{d}{1}+80\binom{d}{2}+864\binom{d}{3}+2496\binom{d}{4}+1920\binom{d}{5} \\
& C_{6}=\binom{d}{1}+196\binom{d}{2}+4032\binom{d}{3}+21888\binom{d}{4}+40320\binom{d}{5}+23040\binom{d}{6} \\
& C_{7}=\binom{d}{1}+468\binom{d}{2}+17664\binom{d}{3}+163008\binom{d}{4}+541440\binom{d}{5}+714240\binom{d}{6} \\
& +322560\binom{d}{7} \\
& C_{8}=\binom{d}{1}+1120\binom{d}{2}+75624\binom{d}{3}+1121664\binom{d}{4}+5955840\binom{d}{5}+13639680\binom{d}{6} \\
& +13870080\binom{d}{7}+5160960\binom{d}{8} \tag{4.1}
\end{align*}
$$

where $\binom{d}{r}$ are binomial coefficients. To calculate the coefficients of the binomial coefficients, we first computed $C_{n}(n=1,2,3, \ldots)$ for fixed $d(=4,5, \ldots)$ by machine enumeration. Data for the cases $d=2$ and 3 are already known through orders $n=24$ and 16, respectively (Whittington et al 1979, Gaunt et al 1980).

We now use these results to derive an expression for v in inverse powers of $\sigma=2 d-1$. The data in (4.1) may be written in the general form

$$
\begin{equation*}
C_{n}(d)=\sum_{\xi=0}^{n-1} C_{n}^{\xi}\binom{d}{n-\xi} \tag{4.2}
\end{equation*}
$$

For $\xi=0,1,2$ and 3 we have been able to calculate C_{n}^{ξ} as functions of n,

$$
\begin{align*}
C_{n}(d)=2^{n-1} n! & \binom{d}{n}+2^{n-2}(n-1)!\left(n^{2}-3 n+3\right)\binom{d}{n-1} \\
& +2^{n-3}(n-2)!\frac{1}{6}\left(3 n^{4}-26 n^{3}+87 n^{2}-136 n+96\right)\binom{d}{n-2} \\
& +2^{n-4}(n-3)!\frac{1}{6}\left(n^{6}-17 n^{5}+120 n^{4}-453 n^{3}+983 n^{2}\right. \\
& -1228 n+852)\binom{d}{n-3}+\ldots+\binom{d}{1} \quad(n \geqslant 6) . \tag{4.3}
\end{align*}
$$

Following the approach outlined by Gaunt et al (1976) we expand the binomial coefficients in (4.3) in inverse powers of σ giving

$$
\begin{equation*}
C_{n}(d)=\frac{1}{2} \sigma^{n}\left[1-(n-3) \sigma^{-1}+\frac{1}{2}\left(n^{2}-7 n+14\right) \sigma^{-2}-\frac{1}{6}\left(n^{3}-12 n^{2}+71 n-246\right) \sigma^{-3}+\ldots\right] . \tag{4.4}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\ln v(d)=\lim _{n \rightarrow \infty} n^{-1} \ln C_{n}(d)=\ln \sigma-\sigma^{-1}-\frac{1}{2} \sigma^{-2}-3 \frac{1}{3} \sigma^{-3}-\ldots \tag{4.5}
\end{equation*}
$$

or, taking exponentials,

$$
\begin{equation*}
v=\sigma\left(1-\sigma^{-1}-3 \sigma^{-3}-\ldots\right) \tag{4.6}
\end{equation*}
$$

The prefactor term in (4.6) corresponds, as expected, to the Bethe approximation $v=\sigma$ and the leading correction term is of first order in $1 / \sigma$.

In a similar way, we have derived the following expressions for the numbers $S(n ; 3)$ of stars with three branches and up to $n=8$ bonds strongly embeddable in a d dimensional hypercubic lattice:

$$
\begin{align*}
& S(3 ; 3)=4\binom{d}{2}+8\binom{d}{3} \\
& S(4 ; 3)=20\binom{d}{2}+144\binom{d}{3}+192\binom{d}{4} \\
& S(5 ; 3)=84\binom{d}{2}+1320\binom{d}{3}+4416\binom{d}{4}+3840\binom{d}{5} \\
& S(6 ; 3)=308\binom{d}{2}+9264\binom{d}{3}+59584\binom{d}{4}+122880\binom{d}{5}+76800\binom{d}{6} \\
& S(7 ; 3)=1048\binom{d}{2}+57696\binom{d}{3}+631872\binom{d}{4}+2328960\binom{d}{5} \\
& \quad+3340800\binom{d}{6}+1612800\binom{d}{7} \\
& S(8 ; 3)=3312\binom{d}{2}+329400\binom{d}{3}+5821824\binom{d}{4}+34379520\binom{d}{5} \\
& +85178880\binom{d}{6}+92252160\binom{d}{7}+36126720\binom{d}{8} \tag{4.7}
\end{align*}
$$

It can be shown more generally that

$$
\begin{align*}
S(n ; 3)= & \sum_{\xi=0}^{n-2} S_{n}^{\xi}\binom{d}{n-\xi} \tag{4.8}\\
= & \frac{1}{3!} 2^{n-1} n!(n-1)(n-2)\binom{d}{n}+\frac{1}{3!} 2^{n-2}(n-1)!(n-2)\left(n^{3}-4 n^{2}+3 n+6\right) \\
& \times\binom{ d}{n-1}+\frac{1}{3!} 2^{n-3}(n-2)!\frac{1}{6}\left(3 n^{6}-35 n^{5}+153 n^{4}-269 n^{3}\right. \\
& +700 n-1020)\binom{d}{n-2}+\ldots \quad(n \geqslant 4) \tag{4.9}
\end{align*}
$$

and hence that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{-1} \ln S(n ; 3)=\ln \sigma-\sigma^{-1}-\frac{1}{2} \sigma^{-2}-\ldots \tag{4.10}
\end{equation*}
$$

which is term-by-term identical with the analogous expansion (4.5) for $\ln v$, at least to this order. This is consistent with the result

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{-1} \ln S(n ; 3)=\lim _{n \rightarrow \infty} n^{-1} \ln C_{n}=\ln v, \tag{4.11}
\end{equation*}
$$

which readily follows from the lemma proved in $\S 2$.

We have performed similar calculations for weak embeddings of stars with three branches. Expressions for $s(n ; 3)$ for $n \leqslant 9$ bonds are

$$
\begin{align*}
& s(3 ; 3)=4\binom{d}{2}+8\binom{d}{3} \\
& s(4 ; 3)=36\binom{d}{2}+192\binom{d}{3}+192\binom{d}{4} \\
& s(5 ; 3)=192\binom{d}{2}+2280\binom{d}{3}+5760\binom{d}{4}+3840\binom{d}{5} \\
& s(6 ; 3)=872\binom{d}{2}+20176\binom{d}{3}+96640\binom{d}{4}+153600\binom{d}{5}+76800\binom{d}{6} \\
& s(7 ; 3)=3508\binom{d}{2}+151416\binom{d}{3}+1235520\binom{d}{4}+3509760\binom{d}{5}+4032000\binom{d}{6} \\
& \quad+1612800\binom{d}{7} \\
& s(8 ; 3)=13252\binom{d}{2}+1035696\binom{d}{3}+13515264\binom{d}{4}+61063680\binom{d}{5} \\
& \quad+120844800\binom{d}{6}+108380160\binom{d}{7}+36126720\binom{d}{8} \\
& s(9 ; 3)=47320\binom{d}{2}+6632184\binom{d}{3}+133791104\binom{d}{4}+903610240\binom{d}{5} \\
& \quad+2739394560\binom{d}{6}+4130595840\binom{d}{7}+3034644480\binom{d}{8} \\
& \quad+867041280\binom{d}{9} . \tag{4.12}
\end{align*}
$$

More generally, we find

$$
\begin{equation*}
s(n ; 3)=\sum_{\xi=0}^{n-2} s_{n}^{\xi}\binom{d}{n-\xi} \tag{4.13}
\end{equation*}
$$

and the first few terms are

$$
\begin{align*}
& s(n ; 3)=\frac{1}{3!} 2^{n-1} n!(n-1)(n-2)\binom{d}{n}+\frac{1}{3!} 2^{n-2}(n-1)!n(n-1)(n-2)^{2}\binom{d}{n-1} \\
&+\frac{1}{3!} 2^{n-3}(n-2)!(n-3) \frac{1}{6}\left(3 n^{5}-20 n^{4}+48 n^{3}-53 n^{2}+12 n+100\right)\binom{d}{n-2} \\
&+\frac{1}{3!} 2^{n-4}(n-3)!\frac{1}{6}\left(n^{8}-17 n^{7}+120 n^{6}-459 n^{5}+1029 n^{4}-1230 n^{3}-64 n^{2}\right. \\
&+3596 n-7152)\binom{d}{n-3}+\ldots \quad(n \geqslant 5) . \tag{4.14}
\end{align*}
$$

The coefficients of $\binom{d}{n}$ in (4.14) and (4.9) are identical since, for clusters which stretch into the maximum possible number of dimensions, there is no difference between weak
and strong embeddings. From (4.14) we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{-1} \ln s(n ; 3)=\ln \sigma-\sigma^{-2}-2 \sigma^{-3}-\ldots \tag{4.15}
\end{equation*}
$$

For the problem of weakly embeddable chains (or undirected self-avoiding walks), Fisher and Gaunt (1964) give the analogue of (4.5) as
$\ln \mu(d)=\lim _{n \rightarrow \infty} n^{-1} \ln c_{n}(d)=\ln \sigma-\sigma^{-2}-2 \sigma^{-3}-11 \frac{1}{2} \sigma^{-4}-64 \sigma^{-5}-\ldots$.
The expansions (4.15) and (4.16) are term-by-term identical at least through order σ^{-3}. This observation is consistent with the exact result in (1.16).

On taking the exponential of (4.16) we get (Fisher and Gaunt 1964)

$$
\begin{equation*}
\mu=\sigma\left(1-\sigma^{-2}-2 \sigma^{-3}-11 \sigma^{-4}-62 \sigma^{-5}-\ldots\right) \tag{4.17}
\end{equation*}
$$

Although $1 / \sigma$ expansions are probably only asymptotic, comparison of (4.17) with (4.6) suggests that the rigorous result $\mu(d) \geqslant v(d)$ is in fact a strict inequality for all d_{0} Numerical estimates of μ and v support this conjecture for $d=2$ and 3 (Watts 1975, Gaunt et al 1979, 1980).

More generally, let us consider weakly embeddable stars with n bonds and b branches. The Bethe approximation for lattices of coordination number q may be obtained by first embedding the homeomorphically irreducible graph in ($\binom{q}{b}$ ways and then multiplying by a factor to account for the additional ($n-b$) bonds, giving

$$
\begin{equation*}
s(n ; b)=\binom{q}{b}(q-1)^{n-b}\binom{n-1}{b-1} . \tag{4.18}
\end{equation*}
$$

A detailed study shows that for hypercubical lattices with $q=2 d$ the leading correction to (4.18) is of $\mathrm{O}\left(d^{n-2}\right)$. Hence, following some algebra, we find

$$
\begin{gather*}
s(n ; b)=\frac{1}{b!} 2^{n} n!\binom{n-1}{b-1}\binom{d}{n}+\frac{1}{b!} 2^{n-2}(n-1)!\left(2 n^{2}-4 n-b^{2}+3 b\right) \\
\times\binom{ n-1}{b-1}\binom{d}{n-1}+\ldots \quad(n \geqslant b) \tag{4.19}
\end{gather*}
$$

Note that on setting $b=3$ we reproduce the first two terms in (4.14). Expanding the binomial coefficients in inverse powers of σ gives

$$
\begin{equation*}
s(n ; b)=\frac{1}{b!}\binom{n-1}{b-1} \sigma^{n}\left[1-\frac{1}{2} b(b-3) \sigma^{-1}+\mathrm{O}\left(\sigma^{-2}\right)\right] \tag{4.20}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{-1} \ln s(n ; b)=\ln \sigma+\mathrm{O}\left(\sigma^{-2}\right) \tag{4.21}
\end{equation*}
$$

If the star is strongly embeddable in a hypercubic lattice the leading correction to (4.18) is then of $O\left(d^{n-1}\right)$. Consequently, the Bethe approximation gives only the leading contribution correctly, namely

$$
\begin{equation*}
S(n ; b)=\frac{1}{b!} 2^{n} n!\binom{n-1}{b-1}\binom{d}{n}+\ldots \quad(n \geqslant b) \tag{4.22}
\end{equation*}
$$

giving

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{-1} \ln S(n ; b)=\ln \sigma+O\left(\sigma^{-1}\right) \tag{4.23}
\end{equation*}
$$

For all b, there is term-by-term agreement between (4.21) and (4.16) and between (4.23) and (4.5). Such agreement is consistent with the exact result (1.16) for weak embeddings and that proved in $\S 2$ for strong embeddings. Although these results are not particularly impressive, owing to the shortness of the series, the calculation of further terms in (4.19) and (4.22) is a highly non-trivial problem.

More generally still, it seems that in the Bethe approximation the number of embeddings g_{n} of a graph G with n bonds is

$$
\begin{equation*}
g_{n}=\binom{n-1}{b-1} R(G) q(q-1)^{n-1-\lambda_{2}-\lambda_{3}-\ldots-\lambda_{\sigma}} \prod_{i=2}^{\sigma}(q-i)^{\lambda_{i}} \tag{4.24}
\end{equation*}
$$

Here $\sigma=q-1$ where q is the coordination number of the lattice, $R(G)$ is the reciprocal of the symmetry number of G and $\lambda_{2}, \lambda_{3}, \ldots, \lambda_{\sigma}$ are integers whose values depend on the topology under consideration. For example, setting $1 / R(G)=b!, \lambda_{i}=1$ for $2 \leqslant i \leqslant b-1$ and $\lambda_{1}=0$ otherwise regains the result (4.18) for stars with b branches. The corresponding result for combs with n bonds and t teeth can be obtained by setting $R(G)=\frac{1}{8}, \lambda_{i}=t$ for $i=2$ and zero otherwise. This gives

$$
\begin{equation*}
c(n ; t)=\frac{1}{8} q(q-1)^{n-t-1}(q-2)^{t}\binom{n-1}{2 t} \tag{4.25}
\end{equation*}
$$

where we have used $b=2 t+1$ which follows from (1.15) on setting $m_{i}=1$ for all i. Similarly for brushes with t bristles of multiplicities $m_{1}, m_{2}, \ldots, m_{t}$, we set

$$
1 / R(g)=\Delta\left(m_{1}+1\right)\left(m_{t}+1\right) \prod_{i=1}^{i} m_{i}!
$$

where Δ is 1 or 2 depending on the symmetry, and $\lambda_{i}=\Sigma_{t}^{\prime} 1(i=2,3, \ldots, \sigma)$, where the prime indicates that the summation over the bristles includes only those with multiplicity greater than or equal to ($i-1$). The resulting expression may be rewritten more conveniently as
$b\left(n ; m_{1}, m_{2}, \ldots, m_{t}\right)=\frac{q}{\Delta\left(m_{1}+1\right)\left(m_{t}+1\right)}\binom{n-1}{b-1}(q-1)^{n-b} \prod_{i=1}^{f}\left(m_{i}+1\right)\binom{q-1}{m_{i}+1}$.

For the hypercubical lattices, it follows from the general Bethe result (4.24) that for sufficiently large n

$$
\begin{gather*}
g_{n}=n!2^{n}\binom{n-1}{b-1} R(G)\binom{d}{n}+(n-1)!2^{n-1}\left(n^{2}-2 n-\lambda\right)\binom{n-1}{b-1} R(G)\binom{d}{n-1}+\ldots \\
\times\left(\lambda=-1+\sum_{i=2}^{\sigma}(i-1) \lambda_{i}\right) \tag{4.27}
\end{gather*}
$$

for weak embeddings and

$$
\begin{equation*}
G_{n}=n!2^{n}\binom{n-1}{b-1} R(G)\binom{d}{n}+\ldots \tag{4.28}
\end{equation*}
$$

for strong embeddings. (Note that on making the substitutions appropriate for stars in (4.27) and (4.28) one regains the results (4.19) and (4.22), respectively.) As expected the results (4.27) and (4.28) give $1 / \sigma$ expansions for the appropriate growth factors
which agree with the $1 / \sigma$ expansions for μ and v through first and zeroth orders, respectively.

To conclude this section we use the data given in (4.7) and (4.12) to study the asymptotic forms of $S(n ; 3)$ and $s(n ; 3)$ in $d=4$ dimensions. The aim here is to test the validity of our conjecture (1.19) at the critical dimension where, according to (1.14) and (1.21), we expect to find $\gamma_{s, 3}=\gamma_{s, 3}=3$ (or b more generally). We have employed the same series analysis techniques as described in §3. Biased estimates of $\gamma_{s, 3}$ and $\gamma_{s, 3}$ have been calculated using $\mu(d=4)=6.768 \pm 0.002$ (Fisher and Gaunt 1964) and $v(d=4)=5.93 \pm 0.03$ and are plotted against $1 / n$ in figure 9 . (We obtained the estimate of v from a ratio analysis of the data given in (4.1).) Clearly these results are consistent with the conjectured values of $\gamma_{s, 3}=\gamma_{S, 3}=3$.

Figure 9. Plots against $1 / n$ of biased ratio estimates of $\gamma_{s, 3}$ and $\gamma_{S, 3}$ for weak (O) and strong $(+)$ embeddings, respectively, of stars with $b=3$ branches on the simple hypercubic lattice of $d=4$ dimensions. The conjectured exponent b is indicated by an arrow.

5. Connection with lattice trees

In this section we focus on the relationship between lattice trees with specified topologies and the total number of unrestricted lattice trees. We work with weakly embeddable clusters, although analogous ideas hold for strong embeddings.

It seems that trees with any specified topology all have the same growth constant μ, namely, the Saw limit. For unrestricted trees, on the other hand, the growth constant is λ_{0}, where it is known rigorously that $\lambda_{0}>\mu$ (Gaunt et al 1982). In addition, and more importantly, the universality class of trees with a specified topology depends on the number (b) of branches, possibly through the critical exponent $(\gamma+b-2$), while for unrestricted trees the analogous exponent is $-\theta_{0}$. By contrast, position space
renormalisation group calculations (Family 1980) suggest that varying the branching fugacity should not change the universality class of branched polymers with no cycles.

In order to reconcile these apparently contradictory results, we present the following heuristic argument. This parallels rather closely that used by Whittington et al (1983) to reconcile their exact enumeration results for animals with a prescribed number of cycles with the field-theoretic renormalisation group prediction that critical exponents are independent of cycle fugacity.

Let us begin by defining an activity (or fugacity) x_{i} associated with a vertex of degree $i(i=1,2, \ldots, q)$. Clusters with n sites and vertex set $\left(n_{3}, n_{4}, \ldots, n_{q}\right)$ will then be associated with an embedding factor $t\left(n ; n_{3}, n_{4}, \ldots, n_{q}\right)$ and an activity factor $\Pi_{i=1}^{q} x_{i}^{n_{1}}$, where n_{1} and n_{2} are given by (1.9) and (1.17), respectively. Summing over all possible vertex sets $\left\{n_{i}\right\}$ and substituting for n_{1} and n_{2} gives the generating function

$$
\begin{align*}
G\left(n ; x_{1}, x_{2}\right. & \left., \ldots, x_{q}\right) \\
& =\sum_{\left\{n_{i}\right\}} t\left(n ; n_{3}, n_{4}, \ldots, n_{q}\right) \prod_{i=1}^{q} x_{i}^{n_{i}} \tag{5.1}\\
& =x_{1} x_{2}^{n-1} \sum_{\left\{n_{2}\right\}} t\left(n ; n_{3} n_{4}, \ldots, n_{q}\right) \frac{x_{1}^{1+\sum q=3^{(i-2) n_{i}} \prod_{i=3}^{q} x_{i}^{n_{1}}}}{x_{2}^{1+\sum_{i=3}^{(i-1) n_{t}}} .} \tag{5.2}
\end{align*}
$$

If we define the reduced activities

$$
\begin{equation*}
z_{i}=x_{i} / x_{2} \quad(i=1,3,4, \ldots, q), \tag{5.3}
\end{equation*}
$$

then we obtain
$G\left(n ; z_{1}, x_{2}, z_{3}, \ldots, z_{q}\right)=z_{1} x_{2}^{n} \sum_{\left\{n_{i}\right\}} t\left(n ; n_{3}, n_{4}, \ldots, n_{q}\right) z_{1}^{1+\sum_{i=3}^{q}(i-2) n_{i}} \prod_{i=3}^{q} z_{i}^{n}$.
Letting

$$
\begin{equation*}
z_{1}=z_{3}=z_{4}=\ldots=z_{q}=z \tag{5.5}
\end{equation*}
$$

now gives

$$
\begin{equation*}
G\left(n ; z, x_{2}\right)=z x_{2}^{n} \sum_{\left\{n_{\}}\right\}} t\left(n ; n_{3}, n_{4}, \ldots, n_{q}\right) z^{b} \tag{5.6}
\end{equation*}
$$

where we have used the relation (1.10). The variable z, which keeps track of the number of branches in the cluster, will be referred to as the branching fugacity.

If we use (1.18) and (1.19) to replace $t\left(n ; n_{3}, n_{4}, \ldots, n_{q}\right)$ in (5.6) by its dominant asymptotic form, we obtain

$$
\begin{align*}
G\left(n ; z, x_{2}\right) & =z x_{2}^{n} n^{\gamma-2} \mu^{n} \sum_{b=1}^{b_{\max }} A_{b} n^{b} z^{b} \tag{5.7}\\
& \sim z x_{2}^{n} n^{\gamma-2} \mu^{n} A(n z), \quad n \rightarrow \infty, \tag{5.8}
\end{align*}
$$

where

$$
\begin{equation*}
A(w)=\sum_{b=1}^{\infty} A_{b} w^{b} \tag{5.9}
\end{equation*}
$$

is the generating function of the amplitudes A_{b} (Note that the amplitude A_{b} is the
sum of the amplitudes associated with the cluster numbers for all the vertex sets ($n_{3}, n_{4}, \ldots, n_{q}$) consistent with a given number, b, of branches.)

We see from (5.1) that $G(n ; 1,1)=a_{n 0}$, the number of weakly embeddable lattice trees with n sites. If we assume (Gaunt et al 1982) that

$$
\begin{equation*}
a_{n 0} \sim t_{0} n^{-\theta_{0}} \lambda_{0}^{n}, \quad n \rightarrow \infty, \tag{5.10}
\end{equation*}
$$

then it follows that

$$
\begin{equation*}
A(w) \sim t_{0} w^{2-\gamma-\theta_{0}} \mathrm{e}^{\alpha w}, \quad w \rightarrow \infty \tag{5.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=\ln \left(\lambda_{0} / \mu\right) \tag{5.12}
\end{equation*}
$$

On substituting this form for $A(w)$ into (5.8) we obtain, for z arbitrary but close to the lattice tree limit ($z=1$),

$$
\begin{equation*}
G\left(n ; z, x_{2}\right) \sim\left(t_{0} z^{3-\gamma-\theta_{0}}\right) n^{-\theta_{0}}\left(x_{2} \mu \mathrm{e}^{\alpha z}\right)^{n} \tag{5.13}
\end{equation*}
$$

As expected, the growth constant and the critical amplitude are both functions of z. However, the critical exponent is independent of z and equal to the tree exponent θ_{0}. Thus, the universality class for branched polymers without cycles is independent of the branching fugacity (at least in the vicinity of the tree limit).

Within the context of this heuristic theory, the central role played by the conjecture (1.19) in deriving the above results should be noted. For example, suppose more generally that $\gamma_{2}=\gamma+b-1+g(b)$, where $g(b)$ is an arbitrary function of b. Then (5.7) becomes

$$
\begin{equation*}
G\left(n ; z, x_{2}\right)=z x_{2}^{n} n^{\gamma-2} \mu^{n} \sum_{b=1}^{b_{\max }} A_{b} n^{g(b)}(n z)^{b} . \tag{5.14}
\end{equation*}
$$

If the above kind of argument is to work at all, then we must have $g(b)=$ constant $\equiv g$, say. Since γ_{t} must equal γ for $b=1$, we are automatically led to $g(1)=g=0$ and hence to the conjecture (1.19) for γ_{r}.

6. Discussion and summary

In this paper we have considered the problem of lattice trees with a specified topology. For the simple examples studied here, the number (n) of vertices in the cluster and the numbers $\left(n_{i}\right)$ of branching points of degree $i(i=3,4, \ldots, q)$ specify the topology uniquely. Lipson and Whittington (1983) have proved rigorously that weakly embeddable trees have a growth constant of μ, the saw limit. In § 2 we have proved a similar result for strongly embeddable trees. The growth constant is then v, the neighbouravoiding walk limit.

In § 1 we have presented an appealingly simple (but certainly non-rigorous) argument which, nevertheless, predicts the correct growth constant. For the critical exponents, it gives $\gamma_{t}=\gamma_{T}=\gamma+b-1$, which we have adopted as a conjecture. Here γ is the critical exponent for SAWs and b, the number of branches in the topology under consideration, is determined by ($n_{3}, n_{4}, \ldots, n_{q}$). This conjecture is of course correct for simple chains $(b=1)$ and satisfies the exact upper bounds derived in $\S 2$.

In § 3 we have derived and analysed exact enumeration data and our estimates of the critical exponents are consistent with the above conjecture.

The conjectured relation reduces correctly to the Bethe result $\gamma_{t}=\gamma_{T}=b$, as may readily be verified from (4.18) and (4.24). At the critical dimension ($d_{\mathrm{c}}=4$), the Bethe result for the critical exponents is expected to be exact and in $\S 4$ we have tested this explicitly in the case of stars with $b=3$ branches. Also in $\S 4$ we have derived expansions, in inverse powers of $\sigma=2 d-1$, for the growth constants associated with various topologies and these expansions are consistent with the rigorous results proved in § 2 and by Lipson and Whittington (1983).

In § 5 we have considered the relationship between our results for lattice trees with a specified topology and unrestricted lattice trees. We have shown that the particular expression which we conjecture for γ_{t} is a crucial ingredient in an heuristic theory which shows how the universality class for branched polymers without cycles is determined solely by the tree exponent θ_{0} and is independent of the branching fugacity (at least in the vicinity of the tree limit). This conclusion is consistent with position space renormalisation group calculations.

In conclusion, we have argued that the critical exponent associated with a lattice tree with a specified topology depends simply on the number, b, of branches and not on any other details of the topology.

Acknowledgments

We thank Dr G S Joyce for his assistance in deriving some of the data given in table 1 and Dr A J Guttmann for useful conversations.

MKW is grateful to the SERC for the award of a research studentship and JEGL gratefully acknowledges financial support in the form of an Ontario Graduate Fellowship. This research was financially supported in part by NSERC of Canada.

Appendix 1. Data for weak embeddings

Table A1.1. Square lattice.

n	$s(n ; 3)$	$s(n ; 4)$	$c(n ; 2)$	$c(n ; 3)$	$b(n ; 1,2)$	$b(n ; 2,2)$
3	4					
4	36	1				
5	192	12	18			
6	872	78	222		12	
7	3508	404	1742	76	168	2
8	13252	1833	10614	1372	1444	30
9	47320	7624	55894	14040	9680	272
10	163312	29756	264638	108960	55396	1952
11	545580	110768	1163132	706020	283576	11990
12	1784044	397185	4815952	4041068	1336456	65778
13	5711504	1382036	19054456	21047436	5905584	331146
14	18017008	4691614	72551748	101966068	24789504	1557178
15	55997476					
16	172169884					

Table A1.2. Triangular lattice.

n	$s(n ; 3)$	$s(n ; 4)$	$s(n ; 5)$	$s(n ; 6)$	$c(n ; 2)$	$c(n ; 3)$	$b(n ; 1,2)$	$b(n ; 2,2)$
3	20							
4	252	15						
5	2124	228	6		207			
6	14944	2226	102	1	4206		330	
7	94584	17688	1098	18	51726	2484	7638	111
8	558048	124176	9510	207	496758	70020	105042	2940
9	3131904	801768	72018	1908	4097931	1134468	1111746	45477
10	16929408	4872648	497442	15291	30461412	13836120	9991260	533106
11	88877628	28282224	3212010	111234	209806563		80163660	
12	455812616	158334465	19694706	753081				
13			115912092	4822704				
14			659861604	29543226				

Table A1.3. Simple cubic lattice.

n	$s(n ; 3)$	$s(n ; 4)$	$s(n ; 5)$	$s(n ; 6)$	$c(n ; 2)$	$c(n ; 3)$	$b(n ; 1,2)$	$b(n ; 2,2)$
3	20							
4	300	15						
5	2856	300	6		300			
6	22792	3534	150	1	6924		600	
7	161940	33228	2106	30	97884	5232	16272	300
8	1075452	271515	22722	489	1069260	171408	262728	9204
9	6774144	2027376	208800	5944	10032486	3179760	3229440	165720
10	41164608	14171640	1723896	60444	84568002	44364576	33567492	2251224
11	242678340	94350048	13172592	544728	660420144		310289376	
12	1399051652	604392375	94937664	4498264				
13			653538702	34757880				
14				254895345				

Appendix 2. Data for strong embeddings

Table A2.1. Square lattice.

n	$S(n ; 3)$	$S(n ; 4)$	$C(n ; 2)$	$C(n ; 3)$	$B(n ; 1,2)$	$B(n ; 2,2)$
4	4					
5	20	1				
6	84	4	4			
7	308	18	46			
8	1048	68	306	8	96	2
9	3312	243	1614	856	576	14
10	10108	800	7166	5968	2752	84
11	29756	2552	29018	34408	11888	396
12	85756	7824	108714	171848	46904	1716
13	241416	23437	386890	171		
14	670240	68472	1315314	780964	174868	6792
15	1830532	196842	$4 £ 326290$	3286364	619800	25504
16	4949880	555932	13802094	13057992	2118384	91216

Table A2.2. Triangular lattice.

n	$S(n ; 3)$	$C(n ; 2)$	$C(n ; 3)$
4	2		
5	18		
6	108	3	
7	516	45	
8	2232	369	6
9	8940	2391	102
10	34164	13305	1068
11	125580	67104	8640
12	448794	314076	59340
13	1566452	1389582	361728

Table A2.3. Simple cubic lattice.

n	$S(n ; 3)$	$S(n ; 4)$	$S(n ; 5)$	$S(n ; 6)$	$C(n ; 2)$	$C(n ; 3)$	$B(n ; 1,2)$	$B(n ; 2,2)$
4	20							
5	204	15						
6	1572	156	6		126		132	
7	10188	1290	54	1	2460		1080	3108
8	60840	8964	438	6	28176	1080		
9	339336	57321	3030	45	256824	29184	39528	768
10	1817396	341088	19602	296	2010744	456756	393816	11694
11	9381300	1940448	118530	1854	14290968	5344740	3324528	132444

Appendix 3. $s(n ; 3)$ stars weakly embeddable in the diamond (D), body-centred cubic (BCC) and face-centred cubic (FCC) lattices (McKenzie 1967)

n	D	$B C C$	$F C C$
3	4	56	220
4	36	1176	6780
5	216	15600	138432
6	1080	173264	2346856
7	4740	1715688	35727756
8	19404	15877080	506854812
9	75336	139405088	6839985144
10	282096	1180737072	88924734720
11	1023852	9703453656	
12		77978223624	

References

Baker G A Jr, Nickel B G and Meiron D I 1978 Phys. Rev. B 171365
Daoud M and Joanny J F 1981 J. Physique 421359
Domb C and Heap B R 1967 Proc. Phys. Soc. 90985
Duarte J A M S and Ruskin H J 1981 J. Physique 421585
Family F 1980 J. Phys. A: Math. Gen. 13 L325
Fisher M E and Gaunt D S 1964 Phys. Rev. 133 A 224
Gaunt D S and Guttmann A J 1974 Phase Transitions and Critical Phenomena vol 3, ed C Domb and M S Green (New York: Academic) p 181
Gaunt D S, Guttmann A J and Whittington S G 1979 J. Phys. A: Math. Gen. 1275
Gaunt D S, Martín J L. Ord G, Torrie G M and Whittington S G 1980 J. Phys. A: Math. Gen. 131791
Gaunt D S, Sykes M F and Ruskin H J 1976 J. Phys. A: Math. Gen. 91899
Gaunt D S, Sykes M F, Torrie G M and Whittington S G 1982 J. Phys. A: Math. Gen. 153209
de Gennes P G 1979 Scaling Concepts in Polymer Physics (Ithaca, NY: Cornell University Press)
Gupta H, Gwyther C E and Miller J C P 1958 Tables of Partitions, Royal Society Mathematical Tables vol 4 (London: CUP)
Hammersley J M and Morton K W 1954 J. R. Stat. Soc. B 1623
Hammersley J M and Welsh D J A 1962 Q. J. Math. 13108
Le Guillou J C and Zinn-Justin J 1980 Phys. Rev. B 213976
Lipson J E G and Whittington S G 1983 J. Phys. A: Math. Gen. 163119
Lubensky T C and Isaacson J 1979 Phys. Rev. A 202130
McKenzie D S 1967 Thesis (University of London)

- 1976 Phys. Rep. 27C 35

Nienhuis B 1982 Phys. Rev. Lett. 491062
Seitz W A and Klein D J 1981 J. Chem. Phys. 755190
Watson P G 1970 J. Phys. C: Solid State Phys. 3 L. 28
Watts M G 1975 J. Phys. A: Math. Gen. 861
Whittington S G. 1982 Adv. Chem. Phys. 51 ed I Prigogine and S A Rice (New York: Wiley) pp 1-48
Whittington S G. Torrie G M and Gaunt D S 1979 J. Phys. A: Math. Gen. 12 L119

- 1983 J. Phys. A: Math. Gen. 161695

